Baima S, Nobili F, Sessa G, Lucchetti S, Ruberti I, Morelli G (1995) The expression of the Athb-8 homeobox gene is restricted to provascular cells in Arabidopsis thaliana. Development 121:4171–4182
PubMed
CAS
Google Scholar
Baurle I, Dean C (2006) The timing of developmental transitions in plants. Cell 125:655–664. doi:10.1016/j.cell.2006.05.005
PubMed
CAS
Google Scholar
Berleth T, Scarpella E, Prusinkiewicz P (2007) Towards the systems biology of auxin-transport-mediated patterning. Trends Plant Sci 12:151–159. doi:10.1016/j.tplants.2007.03.005
PubMed
CAS
Google Scholar
Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW et al (2003) A gene expression map of the Arabidopsis root. Science 302:1956–1960. doi:10.1126/science.1090022
PubMed
CAS
Google Scholar
Bishopp A, Mähönen AP, Helariutta Y (2006) Signs of change: hormone receptors that regulate plant development. Development 133:1857–1869
PubMed
CAS
Google Scholar
Bjorklund S, Antti H, Uddestrand I, Moritz T, Sundberg B (2007) Cross-talk between gibberellin and auxin in development of Populus wood: gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. Plant J 52:499–511. doi:10.1111/j.1365-313X.2007.03250.x
PubMed
Google Scholar
Bonke M, Thitamadee S, Mahonen AP, Hauser MT, Helariutta Y (2003) APL regulates vascular tissue identity in Arabidopsis. Nature 426:181–186. doi:10.1038/nature02100
PubMed
CAS
Google Scholar
Bowman JL (2004) Class III HD-Zip gene regulation, the golden fleece of ARGONAUTE activity? Bioessays 26:938–942. doi:10.1002/bies.20103
PubMed
CAS
Google Scholar
Brady SM, Orlando DA, Lee J-Y, Wang JY, Koch J, Dinneny JR et al (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318:801–806. doi:10.1126/science.1146265
PubMed
CAS
Google Scholar
Cano-Delgado A, Yin Y, Yu C, Vafeados D, Mora-Garcia S, Cheng JC et al (2004) BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 131:5341–5351. doi:10.1242/dev.01403
PubMed
CAS
Google Scholar
Carland FM, Nelson T (2004) Cotyledon vascular pattern2-mediated inositol (1,4,5) triphosphate signal transduction is essential for closed venation patterns of Arabidopsis foliar organs. Plant Cell 16:1263–1275. doi:10.1105/tpc.021030
PubMed
CAS
Google Scholar
Carland FM, Fujioka S, Takatsuto S, Yoshida S, Nelson T (2002) The identification of CVP1 reveals a role for sterols in vascular patterning. Plant Cell 14:2045–2058. doi:10.1105/tpc.003939
PubMed
CAS
Google Scholar
Carlsbecker A, Helariutta Y (2005) Phloem and xylem specification: pieces of the puzzle emerge. Curr Opin Plant Biol 8:512–517. doi:10.1016/j.pbi.2005.07.001
PubMed
CAS
Google Scholar
Casson SA, Chilley PM, Topping JF, Evans IM, Souter MA, Lindsey K (2002) The POLARIS gene of Arabidopsis encodes a predicted peptide required for correct root growth and leaf vascular patterning. Plant Cell 14:1705–1721. doi:10.1105/tpc.002618
PubMed
CAS
Google Scholar
Choe S, Noguchi T, Fujioka S, Takatsuto S, Tissier CP, Gregory BD et al (1999) The Arabidopsis dwf7/ste1 mutant is defective in the delta7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis. Plant Cell 11:207–221
PubMed
CAS
Google Scholar
Clark SE, Running MP, Meyerowitz EM (1993) CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development 119:397–418
PubMed
CAS
Google Scholar
Clark SE, Running ME, Meyerowitz EM (1995) CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development 121:2057–2067
CAS
Google Scholar
Clay NK, Nelson T (2005) Arabidopsis thickvein mutation affects vein thickness and organ vascularization, and resides in a provascular cell-specific spermine synthase involved in vein definition and in polar auxin transport. Plant Physiol 138:767–777. doi:10.1104/pp.104.055756
PubMed
CAS
Google Scholar
Dello Ioio R, Linhares FS, Scacchi E, Casamitjana-Martinez E, Heidstra R, Costantino P et al (2007) Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol 17:678–682. doi:10.1016/j.cub.2007.02.047
PubMed
CAS
Google Scholar
Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445. doi:10.1038/nature03543
PubMed
CAS
Google Scholar
Digby J, Wareing PF (1966) The effect of applied growth hormones on cambial division and the differentiation of the cambial derivates. Ann Bot (Lond) 30:539–548
CAS
Google Scholar
Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A et al (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13:1768–1774. doi:10.1016/j.cub.2003.09.035
PubMed
CAS
Google Scholar
Eriksson ME, Israelsson M, Olsson O, Moritz T (2000) Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol 18:784–788. doi:10.1038/77355
PubMed
CAS
Google Scholar
Eshed Y, Baum SF, Perea JV, Bowman JL (2001) Establishment of polarity in lateral organs of plants. Curr Biol 11:1251–1260. doi:10.1016/S0960-9822(01)00392-X
PubMed
CAS
Google Scholar
Fisher K, Turner S (2007) PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Curr Biol 12:1061–1066. doi:10.1016/j.cub.2007.05.049
Google Scholar
Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T et al (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153. doi:10.1038/nature02085
PubMed
CAS
Google Scholar
Fukuda H (2004) Signals that control plant vascular cell differentiation. Nat Rev Mol Cell Biol 5:379–391. doi:10.1038/nrm1364
PubMed
CAS
Google Scholar
Fukuda H, Komamine A (1980) Establishment of an experimental system for the study of tracheary element differentiation from single cells isolated from the mesophyll of Zinnia elegans. Plant Physiol 65:57–60
PubMed
CAS
Article
Google Scholar
Fukuda H, Hirakawa Y, Sawa S (2007) Peptide signaling in vascular development. Curr Opin Plant Biol 10:477–482. doi:10.1016/j.pbi.2007.08.013
PubMed
CAS
Google Scholar
Gouwentak C (1941) Cambial activity as dependent on the presence of growth hormone and the presence of non-resting conditions of stems. Proc Ned Akad V Wetensch, Amsterdam 44:654–663
CAS
Google Scholar
Hardtke CS, Berleth T (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 17:1405–1411. doi:10.1093/emboj/17.5.1405
PubMed
CAS
Google Scholar
Hawker NP, Bowman JL (2004) Roles for Class III HD-Zip and KANADI genes in Arabidopsis root development. Plant Physiol 135:2261–2270. doi:10.1104/pp.104.040196
PubMed
CAS
Google Scholar
Higuchi M, Pischke MS, Mähönen AP, Miyawaki K, Hashimoto Y, Seki M et al (2004) In planta functions of the Arabidopsis cytokinin receptor family. Proc Natl Acad Sci USA 101:8821–8826. doi:10.1073/pnas.0402887101
PubMed
CAS
Google Scholar
Hwang I, Sheen J (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413:383–389. doi:10.1038/35096500
PubMed
CAS
Google Scholar
Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T et al (2001) Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409:1060–1063. doi:10.1038/35059117
PubMed
CAS
Google Scholar
Ishida K, Yamashino T, Yokoyama A, Mizuno T (2008) Three type-B response regulators, ARR1, ARR10 and ARR12, play essential but redundant roles in cytokinin signal transduction throughout the life cycle of Arabidopsis thaliana. Plant Cell Physiol 49:47–57. doi:10.1093/pcp/pcm165
PubMed
CAS
Google Scholar
Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N et al (2006) Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313:842–845. doi:10.1126/science.1128436
PubMed
CAS
Google Scholar
Izhaki A, Bowman JL (2007) KANADI and class III HD-Zip gene families regulate embryo patterning and modulate auxin flow during embryogenesis in Arabidopsis. Plant Cell 19:495–508. doi:10.1105/tpc.106.047472
PubMed
CAS
Google Scholar
Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MC (2004) MicroRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428:84–88. doi:10.1038/nature02363
PubMed
CAS
Google Scholar
Junghans U, Langenfeld-Heyser R, Polle A, Teichmann T (2004) Effect of auxin transport inhibitors and ethylene on the wood anatomy of poplar. Plant Biol 6:22–29. doi:10.1055/s-2003-44712
PubMed
CAS
Google Scholar
Kayes JM, Clark SE (1998) CLAVATA2, a regulator of meristem and organ development in Arabidopsis. Development 125:3843–3851
PubMed
CAS
Google Scholar
Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451. doi:10.1038/nature03542
PubMed
CAS
Google Scholar
Kerstetter RA, Bollman K, Taylor RA, Bomblies K, Poethig RS (2001) KANADI regulates organ polarity in Arabidopsis. Nature 411:706–709. doi:10.1038/35079629
PubMed
CAS
Google Scholar
Kiba T, Yamada H, Sato S, Kato T, Tabata S, Yamashino T et al (2003) The type-A response regulator, ARR15, acts as a negative regulator in the cytokinin-mediated signal transduction in Arabidopsis thaliana. Plant Cell Physiol 44:868–874. doi:10.1093/pcp/pcg108
PubMed
CAS
Google Scholar
Kinoshita T, Caño-Delgado A, Seto H, Hiranuma S, Fujioka S, Yoshida S et al (2005) Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature 433:167–171. doi:10.1038/nature03227
PubMed
CAS
Google Scholar
Ko JH, Han KH (2004) Arabidopsis whole-transcriptome profiling defines the features of coordinated regulations that occur during secondary growth. Plant Mol Biol 55:433–453. doi:10.1007/s11103-004-1051-z
PubMed
CAS
Google Scholar
Koizumi K, Naramoto S, Sawa S, Yahara N, Ueda T, Nakano A, Sugiyama M, Fukuda H (2005) VAN3 ARF-GAP-mediated vesicle transport is involved in leaf vascular network formation. Development 132:1699–1711
PubMed
CAS
Google Scholar
Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J et al (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev 19:1855–1860. doi:10.1101/gad.1331305
PubMed
CAS
Google Scholar
Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S, Swarup R et al (2007) Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19:3889–3900. doi:10.1105/tpc.107.055863
PubMed
CAS
Google Scholar
Laux T, Mayer KFX, Berger J, Jurgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87–96
PubMed
CAS
Google Scholar
Lee JY, Colinas J, Wang JY, Mace D, Ohler U, Benfey PN (2006) Transcriptional and posttranscriptional regulation of transcription factor expression in Arabidopsis roots. Proc Natl Acad Sci USA 103:6055–6060. doi:10.1073/pnas.0510607103
PubMed
CAS
Google Scholar
Leibfried A, To JP, Busch W, Stehling S, Kehle A, Demar M et al (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438:1172–1175. doi:10.1038/nature04270
PubMed
CAS
Google Scholar
Mähönen AP, Bonke M, Kauppinen L, Riikonen M, Benfey PN, Helariutta Y (2000) A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev 23:2938–2943. doi:10.1101/gad.189200
Google Scholar
Mähönen AP, Bishopp A, Higuchi M, Nieminen KM, Kinoshita K, Törmäkangas K et al (2006a) Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science 311:94–98. doi:10.1126/science.1118875
PubMed
Google Scholar
Mähönen AP, Higuchi M, Törmäkangas K, Miyawaki K, Pischke MS, Sussman MR et al (2006b) Cytokinins regulate a bidirectional phosphorelay network in Arabidopsis. Curr Biol 16:1116–1122. doi:10.1016/j.cub.2006.04.030
PubMed
Google Scholar
Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK et al (2004) MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J 23:3356–3364. doi:10.1038/sj.emboj.7600340
PubMed
CAS
Google Scholar
Mattsson J, Ckurshumova W, Berleth T (2003) Auxin signaling in Arabidopsis leaf vascular development. Plant Physiol 131:1327–1339. doi:10.1104/pp.013623
PubMed
CAS
Google Scholar
McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709–713. doi:10.1038/35079635
PubMed
CAS
Google Scholar
McHale NA, Koning RE (2004) MicroRNA-directed cleavage of Nicotiana sylvestris PHAVOLUTA mRNA regulates the vascular cambium and structure of apical meristems. Plant Cell 16:1730–1740. doi:10.1105/tpc.021816
PubMed
CAS
Google Scholar
Men S, Boutte Y, Ikeda Y, Li X, Palme K, Stierhof YD et al (2008) Sterol-dependent endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier polarity. Nat Cell Biol 10:237–244. doi:10.1038/ncb1686
PubMed
CAS
Google Scholar
Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M (2005) The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell 17:2993–3006. doi:10.1105/tpc.105.036004
PubMed
CAS
Google Scholar
Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K et al (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19:270–280. doi:10.1105/tpc.106.047043
PubMed
CAS
Google Scholar
Motose H, Fukuda H, Sugiyama M (2001a) Involvement of local intercellular communication in the differentiation of zinnia mesophyll cells into tracheary elements. Planta 213:121–131. doi:10.1007/s004250000482
PubMed
CAS
Google Scholar
Motose H, Sugiyama M, Fukuda H (2001b) An arabinogalactan protein(s) is a key component of a fraction that mediates local intercellular communication involved in tracheary element differentiation of zinnia mesophyll cells. Plant Cell Physiol 42:129–137. doi:10.1093/pcp/pce014
PubMed
CAS
Google Scholar
Motose H, Sugiyama M, Fukuda H (2004) A proteoglycan mediates inductive interaction during plant vascular development. Nature 429:873–878. doi:10.1038/nature02613
PubMed
CAS
Google Scholar
Moyle R, Schrader J, Stenberg A, Olsson O, Saxena S, Sandberg G et al (2002) Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene family in hybrid aspen. Plant J 31:675–685. doi:10.1046/j.1365-313X.2002.01386.x
PubMed
CAS
Google Scholar
Müller B, Sheen J (2007) Arabidopsis cytokinin signaling pathway. Sci STKE 407:cm5. doi:10.1126/stke.4072007cm5
Müller B, Sheen J (2008) Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453:1094–1097. doi:10.1038/nature06943
PubMed
Google Scholar
Nilsson J, Karlberg A, Antti H, Lopez-Vernaza M, Mellerowicz E, Perrot-Rechenmann C et al (2008) Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. Plant Cell 20:843–855. doi:10.1105/tpc.107.055798
PubMed
CAS
Google Scholar
Ohashi-Ito K, Bergmann DC (2007) Regulation of the Arabidopsis root vascular initial population by LONESOME HIGHWAY. Development 134:2959–2968. doi:10.1242/dev.006296
PubMed
CAS
Google Scholar
Ohashi-Ito K, Demura T, Fukuda H (2002) Promotion of transcript accumulation of novel Zinnia immature xylem-specific HD-Zip III homeobox genes by brassinosteroids. Plant Cell Physiol 43:1146–1153. doi:10.1093/pcp/pcf135
PubMed
CAS
Google Scholar
Ohashi-Ito K, Kubo M, Demura T, Fukuda H (2005) Class III homeodomain leucine-zipper proteins regulate xylem cell differentiation. Plant Cell Physiol 46:1646–1656. doi:10.1093/pcp/pci180
PubMed
CAS
Google Scholar
Pekker I, Alvarez JP, Eshed Y (2005) Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell 17:2899–2910. doi:10.1105/tpc.105.034876
PubMed
CAS
Google Scholar
Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847–857. doi:10.1016/0092-8674(95)90288-0
PubMed
CAS
Google Scholar
Rashotte AM, Mason MG, Hutchison CE, Ferreira FJ, Schaller GE, Kieber JJ (2006) A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. Proc Natl Acad Sci USA 103:11081–11085. doi:10.1073/pnas.0602038103
PubMed
CAS
Google Scholar
Ridoutt BG, Pharis RP, Sands R (1996) Fiber length and gibberellins A1 and A20 are decreased in Eucalyptus globus by acylcyclohexanedion injected into the stem. Physiol Plant 96:559–566. doi:10.1111/j.1399-3054.1996.tb00227.x
CAS
Google Scholar
Sachs T (1981) The control of the patterned differentiation of vascular tissues. Adv Bot Res 9:151–262
Google Scholar
Samuels AL, Kaneda M, Rensing KH (2006) The cell biology of wood formation: from cambial divisions to mature secondary xylem. Can J Bot 10:631–639. doi:10.1139/B06-065
Google Scholar
Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T, Nakajima K et al (2007) Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446:811–814. doi:10.1038/nature05703
PubMed
CAS
Google Scholar
Scarpella E, Meijer AH (2004) Pattern formation in the vascular system of monocot and dicot plant species. New Phytol 164:209–242. doi:10.1111/j.1469-8137.2004.01191.x
CAS
Google Scholar
Scarpella E, Marcos D, Friml J, Berleth T (2006) Control of leaf vascular patterning by polar auxin transport. Genes Dev 20:1015–1027. doi:10.1101/gad.1402406
PubMed
CAS
Google Scholar
Scheres B, Xu J (2006) Polar auxin transport and patterning: grow with the flow. Genes Dev 20:922–926. doi:10.1101/gad.1426606
PubMed
CAS
Google Scholar
Scheres B, Di Laurenzio L, Willemsen V, Hauser MT, Janmaat K, Weisbeek P et al (1995) Mutations affecting the radial organisation of the Arabidopsis root display specific defects throughout the embryonic axis. Development 121:53–62
CAS
Google Scholar
Scheres B, McKhann H, van den Berg C, Willemsen V, Wolkenfelt H, de Vrieze G et al (1996) Experimental and genetic analysis of root development in Arabidopsis thaliana. Plant Soil 187:97–105. doi:10.1007/BF00011661
CAS
Google Scholar
Schoof H, Lenhard M, Haecker A, Mayer KF, Jürgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644. doi:10.1016/S0092-8674(00)80700-X
PubMed
CAS
Google Scholar
Schrader J, Baba K, May ST, Palme K, Bennett M, Bhalerao RP et al (2003) Polar auxin transport in the wood-forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals. Proc Natl Acad Sci USA 100:10096–10101. doi:10.1073/pnas.1633693100
PubMed
CAS
Google Scholar
Sibout R, Plantegenet S, Hardtke CS (2008) Flowering as a condition for xylem expansion in Arabidopsis hypocotyl and root. Curr Biol 18:458–463. doi:10.1016/j.cub.2008.02.070
PubMed
CAS
Google Scholar
Sieburth LE, Deyholos MK (2006) Vascular development: the long and winding road. Curr Opin Plant Biol 9:48–54. doi:10.1016/j.pbi.2005.11.008
PubMed
CAS
Google Scholar
Snow R (1935) Activation of cambial growth by pure hormones. New Phytol 34:347–360. doi:10.1111/j.1469-8137.1935.tb06853.x
Google Scholar
Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–2185. doi:10.1105/tpc.107.052068
PubMed
CAS
Google Scholar
Szekeres M, Nemeth K, Koncz-Kalman Z, Mathur J, Kauschmann A, Altmann T et al (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171–182. doi:10.1016/S0092-8674(00)81094-6
PubMed
CAS
Google Scholar
Tuominen H, Puech L, Fink S, Sundberg B (1997) A radial concentration gradient of indole-3-acetic acid is related to secondary xylem development in hybrid aspen. Plant Physiol 115:577–585
PubMed
CAS
Google Scholar
Turner S, Gallois P, Brown D (2007) Tracheary element differentiation. Annu Rev Plant Biol 58:407–433. doi:10.1146/annurev.arplant.57.032905.105236
PubMed
CAS
Google Scholar
Uggla C, Moritz T, Sandberg G, Sundberg B (1996) Auxin as a positional signal in pattern formation in plants. Proc Natl Acad Sci USA 93:9282–9286
PubMed
CAS
Google Scholar
Uggla C, Mellerowicz EJ, Sundberg B (1998) Indole-3-acetic acid controls cambial growth in scots pine by positional signaling. Plant Physiol 117:113–121. doi:10.1104/pp.117.1.113
PubMed
CAS
Google Scholar
Van Norman JM, Frederick RL, Sieburth LE (2004) BYPASS1 negatively regulates a root-derived signal that controls plant architecture. Curr Biol 14:1739–1746. doi:10.1016/j.cub.2004.09.045
PubMed
Google Scholar
Wang Q, Little CH, Oden PC (1997) Control of longitudinal and cambial growth by gibberellins and indole-3-acetic acid in current-year shoots of Pinus sylvestris. Tree Physiol 17:715–721
PubMed
CAS
Google Scholar
Wang ZY, Seto H, Fujioka S, Yoshida S, Chory J (2001) BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410:380–383. doi:10.1038/35066597
PubMed
CAS
Google Scholar
Warening PF (1958) Interaction between indole-acetic and gibberellic acid in cambial activity and differentiation. Nature 181:1745–1746. doi:10.1038/1811745a0
Google Scholar
Weijers D, Sauer M, Meurette O, Friml J, Ljung K, Sandberg G et al (2005) Maintenance of embryonic auxin distribution for apical-basal patterning by PIN-FORMED-dependent auxin transport in Arabidopsis. Plant Cell 17:2517–2526. doi:10.1105/tpc.105.034637
PubMed
CAS
Google Scholar
Wenkel S, Emery J, Hou BH, Evans MM, Barton MK (2007) A feedback regulatory module formed by LITTLE ZIPPER and HD-ZIPIII genes. Plant Cell 19:3379–3390. doi:10.1105/tpc.107.055772
PubMed
CAS
Google Scholar
Wenzel CL, Schuetz M, Yu Q, Mattsson J (2007) Dynamics of MONOPTEROS and PIN-FORMED1 expression during leaf vein pattern formation in Arabidopsis thaliana. Plant J 49:387–398. doi:10.1111/j.1365-313X.2006.02977.x
PubMed
CAS
Google Scholar
Willemsen V, Friml J, Grebe M, van den Toorn A, Palme K, Scheres B (2003) Cell polarity and PIN protein positioning in Arabidopsis require STEROL METHYLTRANSFERASE1 function. Plant Cell 15:612–625. doi:10.1105/tpc.008433
PubMed
CAS
Google Scholar
Yamada H, Suzuki T, Terada K, Takei K, Ishikawa K, Miwa K et al (2001) The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol 42:1017–1023. doi:10.1093/pcp/pce127
PubMed
CAS
Google Scholar
Yamamoto R, Demura T, Fukuda H (1997) Brassinosteroids induce entry into the final stage of tracheary element differentiation in cultured Zinnia cells. Plant Cell Physiol 38:980–983
PubMed
CAS
Google Scholar
Yamamoto R, Fujioka S, Demura T, Takatsuto S, Yoshida S, Fukuda H (2001) Brassinosteroid levels increase drastically prior to morphogenesis of tracheary elements. Plant Physiol 125:556–563. doi:10.1104/pp.125.2.556
PubMed
CAS
Google Scholar
Ye Z-H (2002) Vascular tissue differentiation and pattern formation in plants. Annu Rev Plant Biol 53:183–202. doi:10.1146/annurev.arplant.53.100301.135245
PubMed
CAS
Google Scholar
Zgurski JM, Sharma R, Bolokoski DA, Schultz EA (2005) Asymmetric auxin response precedes asymmetric growth and differentiation of asymmetric leaf1 and asymmetric leaf2 Arabidopsis leaves. Plant Cell 17:77–91. doi:10.1105/tpc.104.026898
PubMed
CAS
Google Scholar
Zhong R, Ye ZH (2001) Alteration of auxin polar transport in the Arabidopsis ifl1 mutants. Plant Physiol 126:549–563
PubMed
CAS
Google Scholar
Zhong R, Ye ZH (2004) Amphivasal vascular bundle 1, a gain-of-function mutation of the IFL1/REV gene, is associated with alterations in the polarity of leaves, stems and carpels. Plant Cell Physiol 45:369–385. doi:10.1093/pcp/pch051
PubMed
CAS
Google Scholar
Zhong R, Richardson EA, Ye ZH (2007) Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta 225:1603–1611. doi:10.1007/s00425-007-0498-y
PubMed
CAS
Google Scholar