Plant Molecular Biology

, Volume 68, Issue 1–2, pp 43–59 | Cite as

Identification of a novel group of putative Arabidopsis thaliana β-(1,3)-galactosyltransferases

  • Yongmei Qu
  • Jack Egelund
  • Paul R. Gilson
  • Fiona Houghton
  • Paul A. Gleeson
  • Carolyn J. Schultz
  • Antony BacicEmail author


To begin biochemical and molecular studies on the biosynthesis of the type II arabinogalactan chains on arabinogalactan-proteins (AGPs), we adopted a bioinformatic approach to identify and systematically characterise the putative galactosyltransferases (GalTs) responsible for synthesizing the β-(1,3)-Gal linkage from CAZy GT-family-31 from Arabidopsis thaliana. These analyses confirmed that 20 members of the GT-31 family contained domains/motifs typical of biochemically characterised β-(1,3)-GTs from mammalian systems. Microarray data confirm that members of this family are expressed throughout all tissues making them likely candidates for the assembly of the ubiquitously found AGPs. One member, At1g77810, was selected for further analysis including location studies that confirmed its presence in the Golgi and preliminary enzyme substrate specificity studies that demonstrated β-(1,3)-GalT activity. This bioinformatic/molecular study of CAZy GT-family-31 was validated by the recent report of Strasser et al. (Plant Cell 19:2278–2292, 2007) that another member of this family (At1g26810; GALT1) encodes a β-(1,3)-GalT involved in the biosynthesis of the Lewis a epitope of N-glycans in Arabidopsis thaliana.


Arabinogalactan-protein CAZy-database Galactosyltransferase Glycosyltransferase Golgi 











Carbohydrate recognition domain


Endoplasmic reticulum










Glucuronic acid








Hydroxyproline-rich glycoproteins




Transmembrane domain



This work was supported by a grant from the Australian Research Council (Discovery Projects DP0343454, DP0663374). Yongmei Qu acknowledges the support of a University of Melbourne International Research Scholarship and a University of Melbourne Research Scholarship. Jack Egelund was supported by The Carlsberg Foundation. We acknowledge the excellent administrative support of Ms Joanne Noble.


  1. Amado M, Almeida R, Carneiro F, Levery SB, Holmes EH, Nomoto M, Hollingsworth MA, Hassan H, Schwientek T, Nielsen PA, Bennett EP, Clausen H (1998) A family of human beta 3-galactosyltransferases—characterization of four members of a UDP-galactose:beta-N-acetyl-glucosamine/beta N-acetyl-galactosamine beta-1,3-galactosyltransferase family. J Biol Chem 273(21):12770–12778PubMedCrossRefGoogle Scholar
  2. Amado M, Almeida R, Schwientek T, Clausen H (1999) Identification and characterization of large galactosyltransferase gene families: galactosyltransferases for all functions. Biochim Biophys Acta Gen Subj 1473(1):35–53CrossRefGoogle Scholar
  3. Awai K, Marechal E, Block MA, Brun D, Masuda T, Shimada H, Takamiya K, Ohta H, Joyard J (2001) Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana. Proc Natl Acad Sci USA 98(19):10960–10965PubMedCrossRefGoogle Scholar
  4. Bacic A, Churms SC, Stephen AM, Cohen PB, Fincher GB (1987) Fine-structure of the arabinogalactan protein form Lolium multiflorum. Carbohydr Res 162(1):85–93CrossRefGoogle Scholar
  5. Bai XM, Zhou DP, Brown JR, Crawford BE, Hennet T, Esko JD (2001) Biosynthesis of the linkage region of glycosaminoglycans—cloning and activity of galactosyltransferase II, the sixth member of the beta 1,3-galactosyltransferase family (beta 3GalT6). J Biol Chem 276(51):48189–48195PubMedGoogle Scholar
  6. Barondes SH, Castronovo V, Cooper DNW, Cummings RD, Drickamer K, Feizi T, Gitt MA, Hirabayashi J, Hughes C, Kasai K, Leffler H, Liu FT, Lotan R, Mercurio AM, Monsigny M, Pillai S, Poirer F, Raz A, Rigby PWJ, Rini JM, Wang JL (1994) Galectins—a family of animal beta-galactoside-binding lectins. Cell 76(4):597–598PubMedCrossRefGoogle Scholar
  7. Breton C, Bettler E, Joziasse DH, Geremia RA, Imberty A (1998) Sequence-function relationship of prokaryotic and eukaryotic galactosyltransferases. J Biochem Tokyo 123:1000–1009PubMedGoogle Scholar
  8. Breton C, Mucha J, Jeanneau C (2001) Structural and functional features of glycosyltransferases. Biochimie 83(8):713–718PubMedCrossRefGoogle Scholar
  9. Breton C, Snajdrova L, Jeanneau C, Koca J, Imberty A (2006) Structures and mechanisms of glycosyltransferases. Glycobiology 16(2):29–37CrossRefGoogle Scholar
  10. Brown SL, Stockdale VJ, Pettolino F, Pocock KF, Lopes MB, Williams PJ, Bacic A, Fincher GB, Høj PB, Waters EJ (2007) Reducing haziness in white wine by overexpression of Saccharomyces cerevisiae genes YOL155c and YDR055w. Appl Microbiol Biotechnol 73:1363–1376PubMedCrossRefGoogle Scholar
  11. Busch C, Hofmann F, Gerhard R, Aktories K (2000) Involvement of a conserved tryptophan residue in the UDP-glucose binding of large clostridial cytotoxin glycosyltransferases. J Biol Chem 275(18):13228–13234PubMedCrossRefGoogle Scholar
  12. Campbell JA, Davies GJ, Bulone V, Henrissat B (1997) A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J 326:929–939PubMedGoogle Scholar
  13. Clarke AE, Anderson RL, Stone BA (1979) Form and function of arabinogalactan-proteins. Phytochemistry 18(4):521–540CrossRefGoogle Scholar
  14. Cuff ME, Miller KI, van Holde KE, Hendrickson WA (1998) Crystal structure of a functional unit from Octopus hemocyanin. J Mol Biol 278(4):855–870PubMedCrossRefGoogle Scholar
  15. Dodd RB, Drickamer K (2001) Lectin-like proteins in model organisms: implications for evolution of carbohydrate-binding activity. Glycobiology 11(5):71–79CrossRefGoogle Scholar
  16. Edwards ME, Dickson CA, Chengappa S, Sidebottom C, Gidley MJ, Reid JSG (1999) Molecular characterisation of a membrane-bound galactosyltransferase of plant cell wall matrix polysaccharide biosynthesis. Plant J 19:691–697PubMedCrossRefGoogle Scholar
  17. Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300(4):1005–1016PubMedCrossRefGoogle Scholar
  18. Fincher GB, Stone BA, Clarke AE (1983) Arabinogalactan-proteins—structure, biosynthesis, and function. Annu Rev Plant Physiol 34:47–70CrossRefGoogle Scholar
  19. Gao MG, Showalter AM (1999) Yariv reagent treatment induces programmed cell death in Arabidopsis cell cultures and implicates arabinogalactan protein involvement. Plant J 19(3):321–331PubMedCrossRefGoogle Scholar
  20. Garinot-Schneider C, Lellouch AC, Geremia RA (2000) Identification of essential amino acid residues in the Sinorhizobium meliloti glucosyltransferase ExoM. J Biol Chem 275(40):31407–31413PubMedCrossRefGoogle Scholar
  21. Geshi N, Jorgensen B, Scheller HV, Ulvskov P (2000) In vitro biosynthesis of 1,4,-beta-galactan attached to rhamnogalacturonan I. Planta 210(4):622–629PubMedCrossRefGoogle Scholar
  22. Gish W, States DJ (1993) Identification of protein coding regions by database similarity search. Nat Genet 3:266–272PubMedCrossRefGoogle Scholar
  23. Gomord V, Wee E, Faye L (1999) Protein retention and localization in the endoplasmic reticulum and the Golgi apparatus. Biochimie 81(6):607–618PubMedCrossRefGoogle Scholar
  24. Goodrum LJ, Patel A, Leykam JF, Kieliszewski MJ (2000) Gum arabic glycoprotein contains glycomodules of both extensin and arabinogalactan-glycoproteins. Phytochemistry 54(1):99–106PubMedCrossRefGoogle Scholar
  25. Goubet F, Morvan C (1994) Synthesis of cell-wall galactans from flax (Linum usitatissimum L) suspension-cultured cells. Plant Cell Physiol 35(5):719–727Google Scholar
  26. Goubet F, Martini F, Thoiron B, Morvan C (1993) Incorporation of D-[U-C-14]glucose and 14CO2 into the cell-wall polymers of flax hypocotyl, in the course of the fiber differentiation. Plant Cell Physiol 34(6):841–848Google Scholar
  27. Grabenhorst E, Schlenke P, Pohl S, Nimtz M, Conradt HS (1999) Genetic engineering of recombinant glycoproteins and the glycosylation pathway in mammalian host cells. Glycoconj J 16(2):81–97PubMedCrossRefGoogle Scholar
  28. Griffitts JS, Whitacre JL, Stevens DE, Aroian RV (2001) Bt toxin resistance from loss of a putative carbohydrate-modifying enzyme. Science 293(5531):860–864PubMedCrossRefGoogle Scholar
  29. Hanisch FA (2001) O-glycosylation of the mucin type. J Biol Chem 382(2):143–149CrossRefGoogle Scholar
  30. Hellberg A, Poole J, Olsson ML (2002) Molecular basis of the globoside-deficient P-k blood group phenotype—identification of four inactivating mutations in the UDP-N-acetylgalactosamine: globotriaosylceramide 3-beta-N-acetylgalactosaminyltransferase gene. J Biol Chem 277(33):29455–29459PubMedCrossRefGoogle Scholar
  31. Hennet T (2002) The galactosyltransferase family. Cell Mol Life Sci 59(7):1081–1095PubMedCrossRefGoogle Scholar
  32. Hiruma T, Togayachi A, Okamura K, Sato T, Kikuchi N, Kwon YD, Nakamura A, Fujimura K, Gotoh M, Tachibana K, Ishizuka Y, Noce T, Nakanishi H, Narimatsu H (2004) A novel human beta 1,3-N-acetylgalactosaminyltransferase that synthesizes a unique carbohydrate structure, GalNAc beta 1-3GlcNAc. J Biol Chem 279(14):14087–14095PubMedCrossRefGoogle Scholar
  33. Iwai T, Inaba N, Naundorf A, Zhang Y, Gotoh M, Iwasaki H, Kudo T, Togayachi A, Ishizuka Y, Nakanishi H, Narimatsu H (2002) Molecular cloning and characterization of a novel UDP-GlcNAc: GalNAc-peptide,beta 1,3-N-acetylglucosaminyltransferase (beta 3Gn-T6), an enzyme synthesizing the core 3 structure of O-glycans. J Biol Chem 277(15):12802–12809PubMedCrossRefGoogle Scholar
  34. Johnson KL, Jones BJ, Bacic A, Schultz CJ (2003) The fasciclin-like arabinogalactan proteins of Arabidopsis. A multigene family of putative cell adhesion molecules. Plant Physiol 133:1911–1925PubMedCrossRefGoogle Scholar
  35. Ju TZ, Cummings RD, Canfield WM (2002) Purification, characterization, and subunit structure of rat core 1 beta 1,3-galactosyltransferase. J Biol Chem 277(1):169–177PubMedCrossRefGoogle Scholar
  36. Juah GY, Lord EM (1996) Localization of pectins and arabinogalactan-proteins in lily (Lilium longiflorum L) pollen tube and style, and their possible roles in pollination. Planta 199(2):251–261Google Scholar
  37. Kapitonov D, Yu RK (1999) Conserved domains of glycosyltransferases. Glycobiology 10:961–978CrossRefGoogle Scholar
  38. Keenleyside WJ, Clarke AJ, Whitfield C (2001) Identification of residues involved in catalytic activity of the inverting glycosyl transferase WbbE from Salmonella enterica serovar borreze. J Bacteriol 183(1):77–85PubMedCrossRefGoogle Scholar
  39. Kieliszewski MJ (2001) The latest hype on Hyp-O-glycosylation codes. Phytochemistry 57(3):319–323PubMedCrossRefGoogle Scholar
  40. Kjer-Nielsen L, van Vliet C, Erlich R, Toh BH, Gleeson PA (1999) The Golgi-targeting sequence of the peripheral membrane protein p230. J Cell Sci 112(11):1645–1654PubMedGoogle Scholar
  41. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580PubMedCrossRefGoogle Scholar
  42. Lee KJD, Sakata Y, Mau SL, Pettolino F, Bacic A, Quatrano RS, Knight CD, Knox JP (2005) Arabinogalactan proteins are required for apical cell extension in the moss Physcomitrella patens. Plant Cell 17(11):3051–3065PubMedCrossRefGoogle Scholar
  43. Li AX, Kong FZ (2004) Syntheses of arabinogalactans consisting of beta-(1-6)-linked D-galactopyranosyl backbone and alpha-(1-3)-linked L-arabinofuranosyl side chains. Carbohydr Res 339(11):1847–1856PubMedCrossRefGoogle Scholar
  44. Llopis J, McCaffrey JM, Miyawaki A, Farquhar MG, Tsien RY (1998) Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci USA 95:6803–6808PubMedCrossRefGoogle Scholar
  45. Lo NW, Shaper JH, Pevsner J, Shaper NL (1998) The expanding beta 4-galactosyltransferase gene family: messages from the databanks. Glycobiology 8(5):517–526PubMedCrossRefGoogle Scholar
  46. Luke MR, Kjer-Nielsen L, Brown DL, Stow JL, Gleeson PA (2003) GRIP domain-mediated targeting of two new coiled-coil proteins, GCC88 and GCC185, to subcompartments of the trans-Golgi network. J Biol Chem 278:4216–4226PubMedCrossRefGoogle Scholar
  47. Malissard M, Dinter A, Berger EG, Hennet T (2002) Functional assignment of motifs conserved in beta 1,3-glycosyltransferases—a mutagenesis study of murine UDP-galactose:beta-N-acetylglucosamine beta 1,3-galactosyltransferase-I. Eur J Biochem 269(1):233–239PubMedCrossRefGoogle Scholar
  48. Mascara T, Fincher GB (1982) Biosynthesis of arabinogalactan-protein in Lolium multiflorum (Ryegrass) endosperm cells—in vitro incorporation of galactosyl residues from UDP-galactose into polymeric products. Aust J Plant Physiol 9(1):31–45CrossRefGoogle Scholar
  49. McNab JM, Villemez CL, Albersheim P (1968) Biosynthesis of galactan by a particulate enzyme preparation from Phaseolus aureus seedlings. Biochem J 106(2):355–360PubMedGoogle Scholar
  50. Motose H, Sugiyama M, Fukuda H (2004) A proteoglycan mediates inductive interaction during plant vascular development. Nature 429:873–878PubMedCrossRefGoogle Scholar
  51. Nakamura N, Lowe M, Levine TP, Rabouille C, Warren G (1997) The vesicle docking protein p115 binds GM130 a cis-Golgi matrix protein, in a mitotically regulated manner. Cell 89:445–455PubMedCrossRefGoogle Scholar
  52. Negishi M, Dong J, Darden TA, Pedersen LG, Pedersen LC (2003) Glucosaminylglycan biosynthesis: what we can learn from the X-ray crystal structures of glycosyltransferases GlcAT1 and EXTL2. Biochem Biophys Res Commun 303(2):393–398PubMedCrossRefGoogle Scholar
  53. Nielsen H, Brunak S, von Heijen G (1999) Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng 12:3–9PubMedCrossRefGoogle Scholar
  54. Nothnagel EA (1997) Proteoglycans and related components in plant cells. Int Rev Cytol 174:195–291PubMedCrossRefGoogle Scholar
  55. Nunan KJ, Scheller HV (2003) Solubilization of an arabinan arabinosyltransfgerase activity from mung bean hypocotyls. Plant Physiol 132:1–12CrossRefGoogle Scholar
  56. Opat AS, van Vliet C, Gleeson PA (2001) Trafficking and localisation of resident Golgi glycosylation enzymes. Biochemie 83:763–773CrossRefGoogle Scholar
  57. Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12(4):357–358PubMedGoogle Scholar
  58. Panayotatos N, Villemez CL (1973) Formation of a beta-(1-)4)-D-galactan chain catalyzed by a Phaseolus aureus enzyme. Biochem J 133(2):263–271PubMedGoogle Scholar
  59. Paulson JC, Colley KJ (1989) Glycosylatansferaese—structure, localization, and control of cell type-specific glycosylation. J Biol Chem 264(30):17615–17618PubMedGoogle Scholar
  60. Perrin RM, DeRocher AE, Bar-Peled M, Zeng W, Norambuena L, Orellana A, Raikhel NV, Keegstra K (1999) Xyloglucan fucosyltransferase, an enzyme involved in plant cell wall biosynthesis. Science 284:1976–1979PubMedCrossRefGoogle Scholar
  61. Perrin R, Wilkerson C, Keegstra K (2001) Golgi enzymes that synthesize plant cell wall polysaccharides: finding and evaluating candidates in the genomic era. Plant Mol Biol 47(1–2):115–130PubMedCrossRefGoogle Scholar
  62. Peugnet I, Goubet F, Bruyant-Vannier MP, Thoiron B, Morvan C, Schols HA, Voragen AGJ (2001) Solubilization of rhamnogalacturonan I galactosyltransferases from membranes of a flax cell suspension. Planta 213(3):435–445PubMedCrossRefGoogle Scholar
  63. Qi W, Fong C, Lamport DTA (1991) Gum-arabic glycoprotein is a twisted hairy rope—a new model based on O-galactosylhydroxyproline as the polysaccharide attachment site. Plant Physiol 96(3):848–855PubMedCrossRefGoogle Scholar
  64. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, NYGoogle Scholar
  65. Schibeci A, Pnjak A, Fincher GB (1984) Biosynthesis of arabinogalactan-protein in Lolium multiflorum (Italian ryegrass) endosperm cells—subcellular-distribution of galactosyltransferases. Biochem J 218(2):633–636PubMedGoogle Scholar
  66. Schultz C, Gilson P, Oxley D, Youl J, Bacic A (1998) GPI-anchors on arabinogalactan-proteins: implications for signalling in plants. TIPS 3(11):426–431Google Scholar
  67. Schwacke R, Schneider A, van der Graaff E, Fischer K, Catoni E, Desimone M, Frommer WB, Flugge UI, Kunze R (2003) ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 131(1):16–26PubMedCrossRefGoogle Scholar
  68. Shibayama K, Ohsuka S, Tanaka T, Arakawa Y, Ohta M (1998) Conserved structural regions involved in the catalytic mechanism of Escherichia coli K-12 WaaO (RfaI). J Bacteriol 180(20):5313–5318PubMedGoogle Scholar
  69. Showalter AM (1993) Structure and function of plant-cell wall proteins. Plant Cell 5(1):9–23PubMedCrossRefGoogle Scholar
  70. Strasser R, Bondili JS, Vavra U, Schoberer J, Svoboda B, Glossl J, Leonard R, Stadlmann J, Altmann F, Steinkellner H, Mach L (2007) A unique 1,3-Galactosyltransferase is indispensable for the biosynthesis of N-glycans containing Lewis a structures in Arabidopsis thaliana. Plant Cell 19:2278–2292PubMedCrossRefGoogle Scholar
  71. Stenvik GE, Butenko MA, Urbanowicz BR, Rose JKC, Aalen RB (2006) Overexpression of inflorescence deficient in abscission activates cell separation in vestigial abscission zones in Arabidopsis. Plant Cell 18(6):1467–1476PubMedCrossRefGoogle Scholar
  72. Tan L, Xu J, Lamport D, Qiu F, Cottrel C, Qian J, Kieliszewski M (2007) The AGP Hyp-arabinogalactan backbone is a folded polysaccharide of reverse-turn hairpins generated by β-(1-6)-linked repeats of β-(1-3) trigalactosyl units. Copenhagen 2007 XIth cell wall meeting. Abstract. Physiol Plant 130:68Google Scholar
  73. Tenno M, Toba S, Kezdy FJ, Elhammer AP, Kurosaka A (2002) Identification of two cysteine residues involved in the binding of UDP-GalNAc to UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase 1(GalNAc-T1). Eur J Biochem 269(17):4308–4316PubMedCrossRefGoogle Scholar
  74. Thompson HJM, Knox JP (1998) Stage-specific responses of embryogenic carrot cell suspension cultures to arabinogalactan protein-binding beta-glucosyl Yariv reagent. Planta 205(1):32–38CrossRefGoogle Scholar
  75. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal-W—improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680PubMedCrossRefGoogle Scholar
  76. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  77. Watanabe M, Miyake K, Yanae K, Kataoka Y, Koizumi S, Endo T, Ozaki A, Iijima S (2002) Molecular characterization of a novel beta 1,3-galactosyltransferase for capsular polysaccharide synthesis by Streptococcus agalactiae type Ib. J Biochem 131(2):183–191PubMedGoogle Scholar
  78. Wiggins CAR, Munro S (1998) Activity of the yeast MNN1 alpha-1,3-mannosyltransferase requires a motif conserved in many other families of glycosyltransferases. Proc Natl Acad Sci USA 95(14):7945–7950PubMedCrossRefGoogle Scholar
  79. Wu MM, Llopis J, Adams S, McCaffrey JM, Kuloma MS, Machen TE, Moore HP, Tsien RY (2000) Organelle pH studies using targeted avidin and fluorescein-biotin. Chem Biol 7:197–209PubMedCrossRefGoogle Scholar
  80. Yuan Z, Teasdale RD (2002) Prediction of Golgi Type II membrane proteins based on their transmembrane domains. Bioinformatics 18(8):1109–1115PubMedCrossRefGoogle Scholar
  81. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136(1):2621–2632PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Yongmei Qu
    • 1
  • Jack Egelund
    • 2
  • Paul R. Gilson
    • 3
  • Fiona Houghton
    • 4
  • Paul A. Gleeson
    • 4
  • Carolyn J. Schultz
    • 5
  • Antony Bacic
    • 1
    Email author
  1. 1.Plant Cell Biology Research Centre, School of BotanyThe University of MelbourneMelbourneAustralia
  2. 2.Department of Molecular BiologyUniversity of CopenhagenCopenhagenDenmark
  3. 3.Infection and Immunity GroupThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
  4. 4.Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneMelbourneAustralia
  5. 5.School of Agriculture, Food and WineThe University of AdelaideAdelaideAustralia

Personalised recommendations