Skip to main content
Log in

The role of the novel adenosine 5′-phosphosulfate reductase in regulation of sulfate assimilation of Physcomitrella patens

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Sulfate assimilation provides reduced sulfur for the synthesis of the amino acids cysteine and methionine and for a range of other metabolites. The key step in control of plant sulfate assimilation is the reduction of adenosine 5′-phosphosulfate to sulfite. The enzyme catalyzing this reaction, adenosine 5′phosphosulfate reductase (APR), is found as an iron sulfur protein in plants, algae, and many bacteria. In the moss Physcomitrella patens, however, a novel isoform of the enzyme, APR-B, has recently been discovered lacking the co-factor. To assess the function of the novel APR-B we used homologous recombination to disrupt the corresponding gene in P. patens. The knock-out plants were able to grow on sulfate as a sole sulfur source and the content of low molecular weight thiols was not different from wild type plants or plants where APR was disrupted. However, when treated with low concentrations of cadmium the APR-B knockout plants were more sensitive than both wild type and APR knockouts. In wild type P. patens, the two APR isoforms were not affected by treatments that strongly regulate this enzyme in flowering plants. The data thus suggest that in P. patens APS reduction is not the major control step of sulfate assimilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bick J-A, Åslund F, Chen Y, Leustek T (1998) Glutaredoxin function for the carboxyl-terminal domain of the plant-type 5′-adenylylsulfate reductase. Proc Natl Acad Sci USA 95:8404–8409

    Article  PubMed  CAS  Google Scholar 

  • Bick JA, Seterdahl AT, Knaff DB, Chen YC, Pitcher LH, Zilinskas BA, Leustek T (2001) Regulation of the plant-type 5′-adenylyl sulfate reductase by oxidative stress. Biochemistry 40:9040–9048

    Article  PubMed  CAS  Google Scholar 

  • Brunner M, Kocsy G, Ruegsegger A, Schmutz D. Brunold C (1995) Effect of chilling on assimilatory sulphate reduction and glutathione synthesis in maize. J Plant Physiol 146:743–747

    CAS  Google Scholar 

  • Bierfreund NM, Tintelnot S, Reski R, Decker EL (2004) Loss of GH3-function does not affect phytochrome-mediated development in a moss, Physcomitrella patens. J Plant Physiol 161:823–835

    Article  PubMed  CAS  Google Scholar 

  • Frank W, Decker EL, Reski R (2005a) Molecular tools to study Physcomitrella patens. Plant Biol 7:220–227

    Article  PubMed  CAS  Google Scholar 

  • Frank W, Ratnadewi D Reski R (2005b) Physcomitrella patens is highly tolerant against drought, salt and osmotic stress. Planta 220:384–394

    Article  PubMed  CAS  Google Scholar 

  • Girke T, Schmidt H, Zäringer U, Reski R, Heinz E (1998) Identification of a novel Delta 6 acyl-group desaturase by targeted gene disruption in Physcomitrella patens. Plant J 15:39–48

    Article  PubMed  CAS  Google Scholar 

  • Hohe A, Decker EL, Gorr G, Schween G, Reski R (2002) Tight control of growth and cell differentiation in photoautotrophically growing moss Physcomitrella patens bioreactor cultures. Plant Cell Rep 20:1135–1140

    Article  CAS  Google Scholar 

  • Hohe A, Egener T, Lucht J, Holtorf H, Reinhard C, Schween G, Reski R (2004) An improved and highly standardised transformation procedure allows efficient production of single and multiple targeted gene knockouts in a moss, Physcomitrella patens. Curr Genet 44:339–347

    Article  PubMed  CAS  Google Scholar 

  • Kamisugi Y, Schlink K, Rensing SA, Schween G, Stackelberg M v, Cuming AC, Reski R, Cove DJ (2006) The mechanism of gene targeting in Physcomitrella patens: homologous recombination, concatenation and multiple integration. Nucl Acids Res 34:6205–6214

    Article  PubMed  CAS  Google Scholar 

  • Kopriva S (2006) Regulation of sulfate assimilation in Arabidopsis and beyond. Ann Bot 97:479–495

    Article  PubMed  CAS  Google Scholar 

  • Kopriva S, Koprivova A (2004) Plant adenosine 5′phosphosulfate reductase—the past, the present, and the future. J Exp Bot 55:1775–1783

    Article  PubMed  CAS  Google Scholar 

  • Kopriva S, Rennenberg H (2004) Control of sulphate assimilation and glutathione synthesis: interaction with N and C metabolism. J Exp Bot 55:1831–1842

    Article  PubMed  CAS  Google Scholar 

  • Kopriva S, Büchert T, Fritz G, Suter M, Weber M, Benda R, Schaller J, Feller U, Schürmann P, Schünemann V, Trautwein AX, Kroneck PMH, Brunold C (2001) Plant adenosine 5′-phosphosulfate reductase is a novel iron–sulfur protein. J Biol Chem 276:42881–42886

    Article  PubMed  CAS  Google Scholar 

  • Kopriva S, Büchert T, Fritz G, Suter M, Benda R, Schünemann V, Koprivova A, Schürmann P, Trautwein AX, Kroneck PMH, Brunold C (2002a) The presence of an iron-sulfur cluster in adenosine 5′-phosphosulfate reductase separates organisms utilizing adenosine 5′-phosphosulfate and phosphoadenosine 5′-phosphosulfate for sulfate assimilation. J Biol Chem 277:21786–21791

    Article  PubMed  CAS  Google Scholar 

  • Kopriva S, Suter M, von Ballmoos P, Hesse H, Krähenbühl U, Rennenberg H, Brunold C (2002b) Interaction of sulfate assimilation with carbon and nitrogen metabolism in Lemna minor. Plant Physiol 130:1406–1413

    Article  PubMed  CAS  Google Scholar 

  • Kopriva S, Fritzemeier K, Wiedemann G, Reski R (2007a) The putative moss 3′phosphoadenosine 5′phosphosulfate reductase is a novel form of adenosine 5′phosphosulfate reductase without iron sulfur cluster. J Biol Chem 282:22930–22938

    Article  PubMed  CAS  Google Scholar 

  • Kopriva S, Wiedemann G, Reski R (2007b) Sulfate assimilation in basal land plants—what does genomic sequencing tell us? Plant Biol. doi:10.1055/s-2007-965430

  • Koprivova A, Suter M, Op den Camp R, Brunold C, Kopriva S (2000) Regulation of sulfate assimilation by nitrogen in Arabidopsis. Plant Physiol 122:737–746

    Article  PubMed  CAS  Google Scholar 

  • Koprivova A, Meyer A, Schween G, Herschbach C, Reski R, Kopriva S (2002) Functional knockout of the adenosine 5´phosphosulfate reductase gene in Physcomitrella patens revives an old route of sulfate assimilation. J Biol Chem 277:32195–32201

    Article  PubMed  CAS  Google Scholar 

  • Koprivova A, Stemmer C, Altmann F, Hoffmann A, Kopriva S, Gorr G, Reski R, Decker EL (2004) Targeted knockouts of Physcomitrella lacking plant-specific immunogenic N-glycans. Plant Biotechnol J 2:517–523

    Article  PubMed  CAS  Google Scholar 

  • Lappartient AG, Vidmar JJ, Leustek T, Glass ADM, Touraine B (1999) Inter-organ signaling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound. Plant J 18:89–95

    Article  PubMed  CAS  Google Scholar 

  • Lee SM, Leustek T (1999) The affect of cadmium on sulfate assimilation enzymes in Brassica juncea. Plant Sci 141:201–207

    Article  CAS  Google Scholar 

  • Leustek T, Martin MN, Bick JA, Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol 51:141–165

    Article  PubMed  CAS  Google Scholar 

  • Li JY, Schiff JA (1991) Purification and properties of adenosine 5′-phosphosulphate sulphotransferase from Euglena. Biochem J 274:355–360

    PubMed  CAS  Google Scholar 

  • Reski R, Abel WO (1985) Induction of budding on chloronemata and caulonemata of the moss, Physcomitrella patens, using isopentenyladenine. Planta 165:354–358

    Article  CAS  Google Scholar 

  • Reski R, Reynolds S, Wehe M, Kleber-Janke T, Kruse S (1998) Moss (Physcomitrella patens) expressed sequence tags include several sequences which are novel for plants. Bot Acta 111:145–151

    Google Scholar 

  • Rother M, Krauss GJ, Grass G, Wesenberg D (2006) Sulphate assimilation under Cd2+ stress in Physcomitrella patens—combined transcript, enzyme and metabolite profiling. Plant Cell Environ 29:1801–1811

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sato N, Nakayama M, Hase T (2001) The 70-kDa major DNA—compacting protein of the chloroplast nucleoid is sulfite reductase. FEBS Lett 487:347–350

    Article  PubMed  CAS  Google Scholar 

  • Schaefer DG (2001) Gene targeting in Physcomitrella patens. Curr Opin Plant Biol 4:143–150

    Article  PubMed  CAS  Google Scholar 

  • Setya A, Murillo M, Leustek T (1996) Sulfate reduction in higher plants: molecular evidence for a novel 5′-adenylsulfate reductase. Proc Natl Acad Sci USA 93:13383–13388

    Article  PubMed  CAS  Google Scholar 

  • Strepp R, Scholz S, Kruse S, Speth V, Reski R (1998) Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proc Natl Acad Sci USA 95:4368–4373

    Article  PubMed  CAS  Google Scholar 

  • Vauclare P, Kopriva S, Fell D, Suter M, Sticher L, von Ballmoos O, Krähenbuhl U, Op den Camp R, Brunold C (2002) Flux control of sulphate assimilation in Arabidopsis thaliana: adenosine 5′-phosphosulphate reductase is more susceptible to negative control by thiols than ATP sulphurylase. Plant J 31:729–740

    Article  PubMed  CAS  Google Scholar 

  • Westerman S, Stulen I, Suter M, Brunold C, De Kok LJ (2001) Atmospheric H2S as sulphur source for Brassica oleracea: consequences for the activity of the enzymes of the assimilatory sulphate reduction pathway. Plant Physiol Biochem 39:425–432

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Research Council (DFG) grant KO2065/3 within the research group FOR 383 “Sulfur metabolism in plants: junction of basic metabolic pathways and molecular mechanisms of stress resistance”. We thank Anne Katrin Prowse for help with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Kopriva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiedemann, G., Koprivova, A., Schneider, M. et al. The role of the novel adenosine 5′-phosphosulfate reductase in regulation of sulfate assimilation of Physcomitrella patens . Plant Mol Biol 65, 667–676 (2007). https://doi.org/10.1007/s11103-007-9231-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-007-9231-2

Keywords

Navigation