Skip to main content
Log in

Putrescine N-methyltransferases—a structure–function analysis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Putrescine N-methyltransferase (PMT) is a key enzyme of plant secondary metabolism at the start of the specific biosynthesis of nicotine, of tropane alkaloids, and of calystegines that are glycosidase inhibitors with nortropane structure. PMT is assumed to have developed from spermidine synthases (SPDS) participating in ubiquitous polyamine metabolism. In this study decisive differences between both enzyme families are elucidated. PMT sequences were known from four Solanaceae genera only, therefore additional eight PMT cDNA sequences were cloned from five Solanaceae and a Convolvulaceae. The encoded polypeptides displayed between 76% and 97% identity and typical amino acids different from plant spermidine synthase protein sequences. Heterologous expression of all enzymes proved catalytic activity exclusively as PMT and K cat values between 0.16 s−1 and 0.39 s−1. The active site of PMT was initially inferred from a protein structure of spermidine synthase obtained by protein crystallisation. Those amino acids of the active site that were continuously different between PMTs and SPDS were mutated in one of the PMT sequences with the idea of changing PMT activity into spermidine synthase. Mutagenesis of active site residues unexpectedly resulted in a complete loss of catalytic activity. A protein model of PMT was based on the crystal structure of SPDS and suggests that overall protein folds are comparable. The respective cosubstrates S-adenosylmethionine and decarboxylated S-adenosylmethionine, however, appear to bind differentially to the active sites of both enzymes, and the substrate putrescine adopts a different position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AdoDATO:

S-adenosyl-1,8-diamino-3-thiooctane

dcSAM:

Decarboxylated S-adenosylmethionine

PMT:

Putrescine N-methyltransferase

SAM:

S-adenosylmethionine

SPDS:

Spermidine synthases

bp:

Base pairs

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Asano N, Kato A, Matsui K, Watson AA, Nash RJ, Molyneux RJ, Hackett L, Topping J, Winchester B (1997) The effects of calystegines isolated from edible fruits and vegetables on mammalian liver glycosidases. Glycobiology 7:1085–1088

    Article  PubMed  CAS  Google Scholar 

  • Asano N, Kato A, Oseki K, Kizu H, Matsui K (1995) Calystegins of Physalis alkekengi var. francheti (Solanaceae). Structure determination and their glycosidase inhibitory activities. Eur J Biochem 229:369–376

    Article  PubMed  CAS  Google Scholar 

  • Asano N, Oseki K, Tomioka E, Kizu H, Matsui K (1994a) N-containing sugars from Morus alba and their glycosidase inhibitory activities. Carbohydr Res 259:243–255

    Article  CAS  Google Scholar 

  • Asano N, Tomioka E, Kizu H, Matsui K (1994b) Sugars with nitrogen in the ring isolated from the leaves of Morus bombycis. Carbohydr Res 253:235–245

    Article  CAS  Google Scholar 

  • Beresford PJ, Woolley JG (1974) Biosynthesis of Tigloidine in Physalis peruviana. Phytochemistry 13:2143–2144

    Article  CAS  Google Scholar 

  • Biastoff S, Teuber M, Zhou ZS, Dräger B (2006) Colorimetric activity measurement of a recombinant putrescine N-methyltransferase from Datura stramonium. Planta Med 72:1136–1141

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Analyt Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brock A, Herzfeld T, Paschke T, Koch M, Draeger B (2006) Brassicaceae contain nortropane alkaloids. Phytochemistry 67:2050–2057

    Article  PubMed  CAS  Google Scholar 

  • Choi KB, Morishige T, Shitan N, Yazaki K, Sato F (2002) Molecular cloning and characterization of coclaurine N-methyltransferase from cultured cells of Coptis japonica. J Biol Chem 277:830–835

    Article  PubMed  CAS  Google Scholar 

  • Dufe VD, Lüersen K, Eschbach M-L, Haider N, Karlberg T, Walter RD, Al-Karadaghi S (2005) Cloning, expression, characterisation and three-dimensional structure determination of Caenorhabditis elegans spermidine synthase. FEBS Lett 579:6037–6043

    Article  PubMed  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Griffin WJ, Lin GD (2000) Chemotaxonomy and geographical distribution of tropane alkaloids. Phytochemistry 53:623–637

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto T, Tamaki K, Suzuki K, Yamada Y (1998a) Molecular cloning of plant spermidine synthases. Plant Cell Physiol 39:73–79

    CAS  Google Scholar 

  • Hashimoto T, Shoji T, Mihara T, Oguri H, Tamaki K, Suzuki K-I, Yamada Y (1998b) Intraspecific variability of the tandem repeats in Nicotiana putrescine N-methyltransferases. Plant Mol Biol 37:25–37

    Article  CAS  Google Scholar 

  • Heim WG, Jelesko JG (2004) Association of diamine oxidase and S-adenosylhomocysteine hydrolase in Nicotiana tabacum extracts. Plant Mol Biol 56:299–308

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Nat Acad Sci USA 89:10915–10919

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S, Henikoff JG (1993) Performance evaluation of amino acid substitution matrices. Proteins 17:49–61

    Article  PubMed  CAS  Google Scholar 

  • Hibi N, Fujita T, Hatano M, Hashimoto T, Yamada Y (1992) Putrescine N-methyltransferase in cultured roots of Hyoscyamus albus: n-butylamine as a potent inhibitor of the transferase both in vitro and in vivo. Plant Physiol 100:826–835

    Article  PubMed  CAS  Google Scholar 

  • Hibi N, Higashiguchi S, Hashimoto T, Yamada Y (1994) Gene expression in tobacco low-nicotine mutants. Plant Cell 6:723–735

    Article  PubMed  CAS  Google Scholar 

  • Jones G, Willett P, Glen RC (1995) A genetic algorithm for flexible molecular overlay and pharmacophore elucidation. J Comput Aided Mol Des 9:532–549

    Article  PubMed  CAS  Google Scholar 

  • Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  PubMed  CAS  Google Scholar 

  • Joshi CP, Chiang VL (1998) Conserved sequence motifs in plant S-adenosyl-l-methionine-dependent methyltransferases. Plant Mol Biol 37:663–674

    Article  PubMed  CAS  Google Scholar 

  • Kagan RM, Clarke S (1994) Widespread occurrence of three sequence motifs in diverse S-adenosylmethionine-dependent methyltransferases suggests a common structure for these enzymes. Arch Biochem Biophys 310:417–427

    Article  PubMed  CAS  Google Scholar 

  • Korolev S, Ikeguchi Y, Skarina T, Beasley S, Arrowsmith C, Edwards A, Joachimiak A, Pegg AE, Savchenko A (2002) The crystal structure of spermidine synthase with a multisubstrate adduct inhibitor. Nat Struct Biol 9:27–31

    Article  PubMed  CAS  Google Scholar 

  • Kozbial PZ, Mushegian AR (2005) Natural history of S-adenosylmethionine-binding proteins. BMC Struct Biol 5:1–26

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  • Li H, Robertson AD, Jensen JH (2006) Very fast empirical prediction and rationalization of protein pKa values. Proteins: Struct Funct Bioinform 4:704–721

    Google Scholar 

  • Liu T, Zhu P, Cheng KD, Meng C, Zhu HX (2005) Molecular cloning and expression of putrescine N-methyltransferase from the hairy roots of Anisodus tanguticus. Planta Med 71:987–989

    Article  PubMed  CAS  Google Scholar 

  • Lounasmaa M, Tamminen T (1993) The tropane alkaloids. In: Manske RHF (ed) The alkaloids, vol 44. Academic Press, New York, pp 1–114

    Google Scholar 

  • MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  • Marcé M, Brown DS, Capell T, Figueras X, Tiburcio AF (1995) Rapid high-performance liquid chromatographic method for the quantitation of polyamines as their dansyl derivatives: application to plant and animal tissues. J Chromatogr B Biomed Appl 666:329–335

    Article  PubMed  Google Scholar 

  • Moffatt BA, Weretilnyk EA (2001) Sustaining S-adenosyl-l-methionine-dependent methyltransferase activity in plant cells. Physiol Plant 113:435–442

    Article  CAS  Google Scholar 

  • Nash RJ, Rothschild M, Porter EA, Watson AA, Waigh RD, Waterman PG (1993) Calystegines in Solanum and Datura species and the death’s-head hawk-moth (Acherontia atropus). Phytochemistry 34:1281–1283

    Article  CAS  Google Scholar 

  • Nissink JWM, Murray C, Hartshorn M, Verdonk ML, Cole JC, Taylor R (2002) A new test set for validating predictions of protein–ligand interaction. Proteins Struct Funct Genet 49:457–471

    Article  PubMed  CAS  Google Scholar 

  • Pellegrini E, Field MJ (2002) A generalized-born solvation model for macromolecular hybrid-potential calculations. J Phys Chem A 106:1316–1326

    Article  CAS  Google Scholar 

  • Riechers DE, Timko MP (1999) Structure and expression of the gene family encoding putrescine N-methyltransferase in Nicotiana tabacum: new clues to the evolutionary origin of cultivated tobacco. Plant Mol Biol 41:387–401

    Article  PubMed  CAS  Google Scholar 

  • Sachan N, Falcone DL (2002) Wound-induced gene expression of putrescine N-methyltransferase in leaves of Nicotiana tabacum. Phytochemistry 61:797–805

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. a laboratory manual 2nd edition. Cold Spring Harbour Laboratory Press, Plainview, New York

    Google Scholar 

  • Schluckebier G, O’Gara M, Saenger W, Cheng X (1995) Universal catalytic domain structure of AdoMet-dependent methyltransferases. J Mol Biol 247:16–20

    Article  PubMed  CAS  Google Scholar 

  • Scholl Y, Höke D, Dräger B (2001) Calystegines in Calystegia sepium derive from the tropane alkaloid pathway. Phytochemistry 58:883–889

    Article  PubMed  CAS  Google Scholar 

  • Shoji T, Yamada Y, Hashimoto T (2000) Jasmonate induction of putrescine N-methyltransferase genes in the root of Nicotiana sylvestris. Plant Cell Physiol 41:831–839

    Article  PubMed  CAS  Google Scholar 

  • Sippl MJ (1990) Calculation of conformational ensembles from potentials of mean force—an approach to the knowledge-based prediction of local structures in globular-proteins. J Mol Biol 213:859–883

    Article  PubMed  CAS  Google Scholar 

  • Smith DD, Summers PS, Weretilnyk EA (2000) Phosphocholine synthesis in spinach: characterization of phosphoethanolamine N-methyltransferase. Physiol Plant 108:286–294

    Article  CAS  Google Scholar 

  • Stenzel O, Teuber M, Dräger B (2006) Putrescine N-methyltransferase in Solanum tuberosum L., a calystegine-forming plant . Planta 223:200–212

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Yamada Y, Hashimoto T (1999) Expression of Atropa belladonna putrescine N-methyltransferase gene in root pericycle. Plant Cell Physiol 40:289–297

    PubMed  CAS  Google Scholar 

  • Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein–ligand docking using GOLD. Proteins Struct Funct Genet 52:609–623

    Article  PubMed  CAS  Google Scholar 

  • Walton NJ, Peerless A-CJ, Robins RJ, Rhodes M-JC, Boswell HD, Robins DJ (1994) Purification and properties of putrescine N-methyltransferase from transformed roots of Datura stramonium L. Planta 193:9–15

    Article  CAS  Google Scholar 

  • Winz RA, Baldwin IT (2001) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. IV. Insect-induced ethylene reduces jasmonate-induced nicotine accumulation by regulating putrescine N-methyltransferase transcripts. Plant Physiol 125:2189–2202

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi H, Nishimoto K (1965) Alkaloids of the root of Physalis alkekengi. I. Isolation of 3a-(tigloyloxy)tropane. Chem Pharm Bull 13:217–220

    PubMed  CAS  Google Scholar 

  • Yoon SO, Lee YS, Lee SH, Cho YD (2000) Polyamine synthesis in plants: isolation and characterization of spermidine synthase from soybean (Glycine max) axes. Biochim Biophys Acta 1475:17–26

    PubMed  CAS  Google Scholar 

  • Zhang ZP, Baldwin IT (1997) Transport of (2-14C)jasmonic acid from leaves to roots mimics wound-induced changes in endogenous jasmonic acid pools in Nicotiana sylvestris. Planta 203:436–441

    Article  CAS  Google Scholar 

  • Zubieta C, He XZ, Dixon RA, Noel JP (2001) Structures of two natural product methyltransferases reveal the basis for substrate specificity in plant O-methyltransferases. Nat Struct Biol 8:271–279

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Professor Keiji Samejima, Josai University, Saitama, Japan, kindly donated dcSAM. The Botanic Garden of Martin Luther University kindly provided and authenticated seed material. Helpful discussions and correction of the manuscript by Dr. Y. Sichhart and S. Biastoff and technical assistance by S. Brauer, C. Harnisch, and B. Schöne in the Institute of Pharmacy are highly appreciated. M.E.A. and F.N. gratefully acknowledge PhD scholarships by the Ministry of Health and Medical Education of the Islamic Republic of Iran. Studies in the Institute of Pharmacy and at the Leibniz Institute of Plant Biochemistry were financially supported by the German research foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Dräger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teuber, M., Azemi, M.E., Namjoyan, F. et al. Putrescine N-methyltransferases—a structure–function analysis. Plant Mol Biol 63, 787–801 (2007). https://doi.org/10.1007/s11103-006-9126-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-9126-7

Keywords

Navigation