Skip to main content
Log in

Generation of secondary small interfering RNA in cell-autonomous and non-cell autonomous RNA silencing in tobacco

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Small interfering RNA (siRNA) species with 21–25 nucleotides in length guide mRNA cleavage, translational arrest, and heterochromatin formation in RNA interference (RNAi). To delineate the target region of RNAi, a construct harboring a transcriptional fusion between parts of the target mRNA and the β-glucuronidase gene was biolistically delivered into tobacco leaves showing an RNAi phenotype and the assay sequence was transiently expressed. The RNAi effect was monitored by amplification of this chimeric transcript. By using this assay method, we addressed the transitive RNA silencing of a tobacco endoplasmic reticulum ω-3 fatty acid desaturase gene (NtFAD3). In the NtFAD3 RNAi plants, the target region of RNAi was restricted in the inducer region corresponding to a stem sequence of the hairpin double-stranded RNA, indicating that endogenous NtFAD3 mRNA was not a template for an RNA-dependent RNA polymerase. The secondary NtFAD3 siRNAs were produced in the crossbred plants between the NtFAD3 overexpressed plant and the NtFAD3 RNAi plant. Similarly, the secondary siRNAs were generated in the systemically silenced scion. Although these secondary siRNAs originated preferentially from the 3′ region downstream of the inducer region, the secondary siRNAs produced in the silenced scion (non-cell autonomous secondary siRNAs) resulted in the strong degradation of the target mRNA, but the secondary siRNAs in the crossbred plants (cell-autonomous secondary siRNAs) showed limited RNA degradation activity. These results showed that this in vivo assay for determination of RNAi efficiency is a useful tool to delineate RNAi mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CaMV:

Cauliflower mosaic virus

cRNA:

Complimentary RNA

dsRNA:

Double-stranded RNA

IR-PTGS:

Inverted repeat-post-transcriptional gene silencing

PTGS:

Post-transcriptional gene silencing

RdRP:

RNA-dependent RNA polymerase

RISC:

RNA-induced silencing complex

RNAi:

RNA interference

siRNA:

Small interfering RNA

S-PTGS:

Sense-post-transcriptional gene silencing

VIGS:

Virus-induced gene silencing

WT:

Wild type

References

  • Agrawal N, Dasaradhi PV, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK (2003) RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 67:657–685

    Article  PubMed  CAS  Google Scholar 

  • Baulcombe DC (1999) Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol 2:109–113

    Article  PubMed  CAS  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  PubMed  CAS  Google Scholar 

  • Bezanilla M, Pan A, Quatrano RS (2003) RNA interference in the moss Physcomitrella patens. Plant Physiol 133:470–474

    Article  PubMed  CAS  Google Scholar 

  • Braunstein TH, Moury B, Johannessen M, Albrechtsen M (2002) Specific degradation of 3′ regions of GUS mRNA in posttranscriptionally silenced tobacco lines may be related to 5′-3′ spreading of silencing. RNA 8:1034–1044

    Article  PubMed  CAS  Google Scholar 

  • Crété P, Leuenberger S, Iglesias VA, Suarez V, Schöb H, Holtorf H, van Eeden S, Meins F Jr (2001) Graft transmission of induced and spontaneous post-transcriptional silencing of chitinase genes. Plant J 28:493–501

    Article  PubMed  Google Scholar 

  • Davuluri GR, van Tuinen A, Mustilli AC, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J, Pennings HMJ, Bowler C (2004) Manipulation of DET1 expression in tomato results in photomorphogenic phenotypes caused by post-transcriptional gene silencing. Plant J 40:344–354

    Article  PubMed  CAS  Google Scholar 

  • Ebhardt HA, Thi EP, Wang M, Unrau PJ (2005) Extensive 3′ modification of plant small RNAs is modulated by helper component-proteinase expression. Proc Natl Acad Sci USA 102:13398–13403

    Article  PubMed  CAS  Google Scholar 

  • Hamada T, Kodama H, Nishimura M, Iba K (1994) Cloning of a cDNA encoding tobacco ω-3 fatty acid desaturase. Gene 147:293–294

    Article  PubMed  CAS  Google Scholar 

  • Hamada T, Kodama H, Takeshita K, Utsumi H, Iba K (1998) Characterization of transgenic tobacco with an increased α-linolenic acid level. Plant Physiol 118:591–598

    Article  PubMed  CAS  Google Scholar 

  • Hamada T, Kodama H (2006) Phenotype of the transgene in plants: expression and silencing. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues, 1st edn. vol. II, Global Science Books, London, UK, pp 98–107

    Google Scholar 

  • Hamilton A, Voinnet O, Chappell L, Baulcombe D (2002) Two classes of short interfering RNA in RNA silencing. EMBO J 21:4671–4679

    Article  PubMed  CAS  Google Scholar 

  • Hammond SM, Bernstein E, Beach D, Hannon GL (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296

    Article  PubMed  CAS  Google Scholar 

  • Han Y, Grierson D (2002a) Relationship between small antisense RNAs and aberrant RNAs associated with sense transgene mediated gene silencing in tomato. Plant J 29:509–519

    Article  CAS  Google Scholar 

  • Han Y, Grierson D (2002b) The influence of inverted repeats on the production of small antisense RNAs involved in gene silencing. Mol Genet Genomics 267:629–635

    Article  CAS  Google Scholar 

  • Himber C, Dunoyer P, Moissiard G, Ritzenthaler C, Voinnet O (2003) Transitivity-dependent and independent cell-to-cell movement of RNA silencing. EMBO J 22:4523–4533

    Article  PubMed  CAS  Google Scholar 

  • Horiguchi G (2004) RNA silencing in plants: a shortcut to functional analysis. Differentiation 72:65–73

    Article  PubMed  CAS  Google Scholar 

  • Hutvágner G, Mlynárová L, Nap J-P (2000) Detailed characterization of the post-transcriptional gene silencing-related small RNA in a GUS gene-silenced tobacco. RNA 6:1445–1454

    Article  PubMed  Google Scholar 

  • Jorgensen RA, Atkinson RG, Forster RLS, Lucas WJ (1998) An RNA-based information superhighway in plants. Science 279:1486–1487

    Article  PubMed  CAS  Google Scholar 

  • Kalantidis K (2004) Grafting the way to the systemic silencing signal in plants. PLoS Biol 2:e224

    Google Scholar 

  • Klahre U, Crété P, Leuenberger SA, Iglesias VA, Meins F Jr (2002) High molecular weight RNAs and small interfering RNAs induce systemic posttranscriptional gene silencing in plants. Proc Natl Acad Sci USA 99:11981–11986

    Article  PubMed  CAS  Google Scholar 

  • Kodama H, Ito M, Ohnishi N, Suzuka I, Komamine A (1991) Molecular cloning of the gene for plant proliferating-cell nuclear antigen and expression of this gene during the cell cycle in synchronized cultures of Catharanthus roseus cells. Eur J Biochem 197:495–503

    Article  PubMed  CAS  Google Scholar 

  • Kodama H, Hamada T, Horiguchi G, Nishimura M, Iba K (1994) Genetic enhancement of cold tolerance by expression of a gene for chloroplast ω-3 fatty acid desaturase in transgenic tobacco. Plant Physiol 105:601–605

    PubMed  CAS  Google Scholar 

  • Kościańska E, Kalantidis K, Wypijewski K, Sadowski J, Tabler M (2005) Analysis of RNA silencing in agroinfiltrated leaves of Nocotiana benthamiana and Nicotiana tabacum. Plant Mol Biol 59:647–661

    Article  PubMed  Google Scholar 

  • Llave C, Kasschau KD, Rector MA, Carrington JC (2002) Endogenous and silencing-associated small RNAs in plants. Plant Cell 14:1605–1619

    Article  PubMed  CAS  Google Scholar 

  • Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349

    Article  PubMed  CAS  Google Scholar 

  • Miki D, Itoh R, Shimamoto K (2005) RNA silencing of single and multiple members in a gene family of rice. Plant Physiol 138:1903–1913

    Article  PubMed  CAS  Google Scholar 

  • Mitsuhara I, Ugaki M, Hirochika H, Ohshima M, Murakami T, Gotoh Y, Katayose Y, Nakamura S, Honkura R, Nishimiya S, Ueno K, Mochizuki A, Tanimoto H, Tsugawa H, Otsuki Y, Ohashi Y (1996) Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol 37:49–59

    PubMed  CAS  Google Scholar 

  • Mitsui M, Murohashi Y, Asano Y, Masada M, Kodama H (2003) Transient assay for in vivo splicing in tobacco leaf cells by particle bombardment. Plant Mol Biol Rep 21:21–30

    CAS  Google Scholar 

  • Motamedi MR, Verdel A, Colmenares SU, Gerber SA, Gygi SP, Moazed D (2004) Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 119:789–802

    Article  PubMed  CAS  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    Article  PubMed  CAS  Google Scholar 

  • Ohta S, Mita S, Hattori T, Nakamura K (1990) Construction and expression in tobacco of a β-glucuronidase reporter gene containing an intron with the coding sequence. Plant Cell Physiol 31:805–813

    CAS  Google Scholar 

  • Palauqui J-C, Elmayan T, Pollien J-M, Vaucheret H (1997) Systemic acquired silencing: transgene-specific post-transcriptional silencing is trasmitted by grafting from silenced stocks to non-silenced scions. EMBO J 16:4738–4745

    Article  PubMed  CAS  Google Scholar 

  • Peterson BO, Albrechtsen M (2005) Evidence implying only unprimed RdRP activity during transitive gene silencing in plants. Plant Mol Biol 58:575–583

    Article  Google Scholar 

  • Qi Y, Hannon GJ (2005) Uncovering RNAi mechanisms in plants: biochemistry enters the foray. FEBS Lett 579:5899–5903

    Article  PubMed  CAS  Google Scholar 

  • Sanders M, Maddelein W, Depicker A, Montagu MV, Cornelissen M, Jacobs J (2002) An active role for endogenous β-1,3-glucanase genes in transgene-mediated co-suppression in tobacco. EMBO J 21:5824–5832

    Article  PubMed  CAS  Google Scholar 

  • Schiebel W, Pélissier T, Riedel L, Thalmeir S, Schiebel R, Kempe D, Lottspeich F, Sänger HL, Wassenegger M (1998) Isolation of an RNA-directed RNA polymerase-specific cDNA clone from tomato. Plant Cell 10:2087–2101

    Article  PubMed  CAS  Google Scholar 

  • Schwach F, Vaisitij FE, Jones L, Baulcombe DC (2005) An RNA-dependent RNA polymerase prevents meristem invasion by potato virus X and is required for the activity but not the production of a systemic silencing signal. Plant Physiol 138:1842–1852

    Article  PubMed  CAS  Google Scholar 

  • Sijen T, Fleenor J, Simmer F, Thijssen KL, Parrish S, Timmons L, Plasterk RHA, Fire A (2001) On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107:465–476

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama T, Cam H, Verdel A, Moazed D, Grewal SIS (2005) RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterchromatin assembly to siRNA production. Proc Natl Acad Sci USA 102:152–157

    Article  PubMed  CAS  Google Scholar 

  • Tang G, Reinhart BJ, Bartel DP, Zamore PD (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17:49–63

    Article  PubMed  CAS  Google Scholar 

  • Tomita R, Hamada T, Horiguchi G, Iba K, Kodama H (2004) Transgene overexpression with cognate small interfering RNA in tobacco. FEBS Lett 573:117–120

    Article  PubMed  CAS  Google Scholar 

  • Vaistij FE, Jones L, Baulcombe DC (2002) Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. Plant Cell 14:857–867

    Article  PubMed  CAS  Google Scholar 

  • van der Krol AR, Mur LA, Beld M, Mol JNM, Stuitje AR (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of a gene expression. Plant Cell 2:291–299

    Article  PubMed  Google Scholar 

  • Van Houdt H, Bleys A, Depicker A (2003) RNA target sequences promote spreading of RNA silencing. Plant Physiol 131:245–253

    Article  PubMed  Google Scholar 

  • Voinnet O (2005) Non-cell autonomous RNA silencing. FEBS Lett 579:5858–5871

    Article  PubMed  CAS  Google Scholar 

  • Voinnet O, Vain P, Angell S, Baulcombe DC (1998) Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell 95:177–187

    Article  PubMed  CAS  Google Scholar 

  • Wang M-B, Rezaian A, Watson JM, Waterhouse PM, Metzlaff M (2006) Understanding and exploiting RNA silencing-mediated antiviral defense in plants. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues. 1st edn. vol. III, Global Science Books, London, UK, pp 509–522

    Google Scholar 

  • Waterhouse PM, Smith NA, Wang M-B (1999) Virus resistance and gene silencing: killing the messenger. Trends Plant Sci 4:452–457

    Article  PubMed  Google Scholar 

  • Waterhouse PM, Helliwell CA (2003) Exploring plant genomes by RNA-induced gene silencing. Nature Rev Genet 4:29–38

    Article  CAS  Google Scholar 

  • Watson JM, Fusaro AF, Wang M, Waterhouse PM (2005) RNA silencing platforms in plants. FEBS Lett 579:5982–5987

    Article  PubMed  CAS  Google Scholar 

  • Xie Q, Guo H (2006) Systemic antiviral silencing in plants. Virus Res 118:1–6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported partly by a Grant-in Aid for Scientific Research (17570030) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Kodama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimamura, K., Oka, Si., Shimotori, Y. et al. Generation of secondary small interfering RNA in cell-autonomous and non-cell autonomous RNA silencing in tobacco. Plant Mol Biol 63, 803–813 (2007). https://doi.org/10.1007/s11103-006-9124-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-9124-9

Keywords

Navigation