Skip to main content
Log in

The influence of matrix attachment regions on transgene expression in Arabidopsis thaliana wild type and gene silencing mutants

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Many studies in both animal and plant systems have shown that matrix attachment regions (MARs) can increase the expression of flanking transgenes. However, our previous studies revealed no effect of the chicken lysozyme MARs (chiMARs) on transgene expression in the first generation transgenic Arabidopsis thaliana plants transformed with a β-glucuronidase gene (uidA) unless gene silencing mutants were used as genetic background for transformation. In the present study, we investigated why chiMARs do not influence transgene expression in transgenic wild-type Arabidopsis plants. We first studied the effect of chiMARs on transgene expression in the progeny of primary transformants harboring chiMAR-flanked T-DNAs. Our data indicate that chiMARs do not affect transgene expression in consecutive generations of wild-type A. thaliana plants. Next, we examined whether these observed results in A. thaliana transformants are influenced by the applied transformation method. The results from in vitro transformed A. thaliana plants are in accordance with those from in planta transformed A. thaliana plants and again reveal no influence of chiMARs on transgene expression in A. thaliana wild-type transformants. The effect of chiMARs on transgene expression is also examined in in vitro transformed Nicotiana tabacum plants, but as for A. thaliana, the transgene expression in tobacco transformants is not altered by the presence of chiMARs. Taken together, our results show that the applied method or the plant species used for transformation does not influence whether and how chiMARs have an effect on transgene expression. Finally, we studied the effect of MARs (tabMARs) of plant origin (tobacco) on the transgene expression in A. thaliana wild-type plants and suppressed gene silencing (sgs2) mutants. Our results clearly show that similar to chiMARs, the tobacco-derived MARs do not enhance transgene expression in a wild-type background but can be used to enhance transgene expression in a mutant impaired in gene silencing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen GC, Hall GE, Childs LC, Weissinger AK, Spiker S, Thompson WF (1993) Scaffold attachment regions increase reporter gene expression in stably transformed plant cells. Plant Cell 5:603–613

    Article  PubMed  CAS  Google Scholar 

  • Allen GC, Hall GE, Michalowski S, Newman W, Spiker S, Weissinger AK, Thompson WF (1996) High-level transgene expression in plant cells: effects of a strong scaffold attachment region from tobacco. Plant Cell 8:899–913

    Article  PubMed  CAS  Google Scholar 

  • Allen GC, Spiker S, Thompson WF (2000) Use of matrix attachment regions (MARs) to minimize transgene silencing. Plant Mol Biol 43:361–376

    Article  PubMed  CAS  Google Scholar 

  • Berezney R, Coffey DS (1974) Identification of a nuclear protein matrix. Biochem Biophys Res Commun 60:1410–1417

    Article  PubMed  CAS  Google Scholar 

  • Bhat SR, Srinivasan S (2002) Molecular and genetic analyses of transgenic plants: considerations and approaches. Plant Sci 164:673–681

    Article  Google Scholar 

  • Breyne P, Van Montagu M, Gheysen G (1994) The role of scaffold attachment regions in the structural and functional organization of plant chromatin. Transgenic Res 3:195–202

    Article  PubMed  CAS  Google Scholar 

  • Butaye KMJ, Goderis IJWM, Wouters PFJ, Pues JM-TG, Delauré SL, Broekaert WF, Depicker A, Cammue BPA, De Bolle MFC (2004) Stable high-level transgene expression in Arabidopsis thaliana using gene silencing mutants and matrix attachment regions. Plant J 39:440–449

    Article  PubMed  CAS  Google Scholar 

  • Butaye KMJ, Cammue BPA, Delauré SL, De Bolle MFC (2005) Approaches to minimize transgene expression variation in plants. Mol Breed 16:79–91

    Article  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Cockerill PN, Garrard WT (1986) Chromosomal loop anchorage sites appear to be evolutionarily conserved. FEBS Lett 204:5–7

    Article  PubMed  CAS  Google Scholar 

  • Day CD, Lee E, Kobayashi J, Holappa LD, Albert H, Ow DW (2000) Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. Genes Dev 14:2869–2880

    Article  PubMed  CAS  Google Scholar 

  • De Block M, Botterman J, Vandewiele M., Dockx J., Thoen C., Gosselé V., Movva R., Thompson C., Van Montagu M, Leemans J. 1987. Engineering herbicide resistance by a double Agrobacterium tumefaciens infection are mainly integrated at the same locus. Theor. Appl. Genet. 82:257–263

    Article  Google Scholar 

  • De Bolle MFC, Butaye KMJ, Coucke WJW, Goderis IJWM, Wouters PFJ, van Boxel N, Broekaert WF, Cammue BPA (2003) Analysis of the influence of promoter elements and a matrix attachment region on the inter-individual variation of transgene expression in populations of Arabidopsis thaliana. Plant Sci 165:169–179

    Article  Google Scholar 

  • De Buck S, Windels P, De Loose M, Depicker A (2004) Single-copy T-DNAs integrated at different positions in the Arabidopsis genome display uniform and comparable β-glucuronidase accumulation levels. Cell Mol Life Sci 61:2632–2645

    Article  PubMed  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    CAS  Google Scholar 

  • Dietz A, Kay V, Schlake T, Landsman J, Bode J (1994) A plant scaffold attached region detected close to a T-DNA integration site is active in mammalian cells. Nucleic Acid Res 22:2744–2751

    Article  PubMed  CAS  Google Scholar 

  • Frisch M, Frech K, Klingenhoff A, Cartharius K, Liebich I, Werner T (2002) In silico prediction of scaffold/matrix attachment regions in large genomic sequences. Genome Res 12:349–354

    Article  PubMed  CAS  Google Scholar 

  • Goderis I, De Bolle M, François I, Broekaert W, Cammue B (2002) A set of modular plant transformation vectors allowing flexible insertion of up to six expression units. Plant Mol Biol 50:17–27

    Article  PubMed  CAS  Google Scholar 

  • Hall G Jr, Allen GC, Loer DC, Thompson WF, Spiker S (1991) Nuclear scaffold and scaffold-attachment regions in higher plants. Proc Natl Acad Sci USA 88:9320–9324

    Article  PubMed  CAS  Google Scholar 

  • Halweg C, Thompson WF, Spiker S (2005) The Rb7 matrix attachment region increases the likelihood and magnitude of transgene expression in tobacco cells: a flow cytometric study. Plant Cell 17:418–429

    Article  PubMed  CAS  Google Scholar 

  • Hobbs SLA, Warketin TD, DeLong CMO (1993) Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol Biol 21:17–26

    Article  PubMed  CAS  Google Scholar 

  • Holmes-Davis R, Comai L (1998) Nuclear matrix attachment regions and plant gene expression. Trends Plant Sci 3:91–97

    Article  Google Scholar 

  • Iglesias VA, Moscone EA, Papp I, Neuhuber F, Michalowski S, Phelan T, Spiker S, Matzke M, Matzke AJM (1997) Molecular and cytogenetic analyses of stably and unstably expressed transgene loci in tobacco. Plant Cell 9:1251–1264

    Article  PubMed  CAS  Google Scholar 

  • Koncz C, Shell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel gene type of Agrobacterium binary vector. Mol Gen Genet 204:383–396

    Article  CAS  Google Scholar 

  • Liu JW, Tabe LM (1998) The influences of two plant matrix attachment regions (MARs) on gene expression in transgenic plants. Plant Cell Physiol 39:115–123

    PubMed  CAS  Google Scholar 

  • Lorence A, Verpoorte R (2004) Gene transfer and expression in plants. Methods Mol Biol 267:329–350

    PubMed  CAS  Google Scholar 

  • Mankin SL, Allen GC, Phelan T, Spiker S, Thompson WF (2003) Elevation of transgene expression level by flanking matrix attachment regions (MAR) is promoter dependent: a study of the interactions of six promoters with the RB7 3’ MAR. Transgenic Res 12:3–12

    Article  PubMed  CAS  Google Scholar 

  • Mielke C, Kohwi Y, Kohwi-Shigematsu T, Bode J (1990) Hierarchical binding of DNA fragments derived from scaffold-attached regions: correlation of properties in vitro and function in vivo. Biochemistry 29:7475–7485

    Article  PubMed  CAS  Google Scholar 

  • Mirkovitch J, Mirault ME, Laemmli UK (1984) Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold. Cell 39:223–232

    Article  PubMed  CAS  Google Scholar 

  • Mlynárová L, Loonen A, Heldens J, Jansen R.C., Keizer P, Stiekema WJ, Nap JP (1994) Reduced position effect in mature transgenic plants conferred by the chicken lysozyme matrix-associated region. Plant Cell 6:417–426

    Article  PubMed  Google Scholar 

  • Mlynárová L, Jansen RC, Conner AJ, Stiekema WJ, Nap JP (1995) The MAR-mediated reduction in position effect can be uncoupled from copy number-dependent expression in transgenic plants. Plant Cell 7:599–609

    Article  PubMed  Google Scholar 

  • Mlynárová L, Hricova A, Loonen A, Nap JP (2003) The presence of a chromatin boundary appears to shield a transgene in tobacco from RNA silencing. Plant Cell 15:2203–2217

    Article  PubMed  Google Scholar 

  • Mourrain P, Beclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Jouette D, Lacombe AM, Nikic S, Picault N, Remoue K, Sanial M, Vo TA, Vaucheret H (2000) Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101:533–542

    Article  PubMed  CAS  Google Scholar 

  • Nap J-P, Keizer P, Jansen R (1993) First-generation transgenic plants and statistics. Plant Mol Biol Rep 11:156–164

    Google Scholar 

  • Oh S-J, Jeong JS, Kim E-H, Yi NR, Yi S-I, Jang I-C, Kim YS, Suh S-C, Nahm BH, Kim J-K (2005) Matrix attachment region from the chicken lysozyme locus reduces variability in transgene expression and confers copy number-dependence in transgenic rice plants. Plant Cell Rep 24:145–154

    Article  PubMed  CAS  Google Scholar 

  • Ow DW (2002) Recombinase-directed plant transformation for the post-genomic era. Plant Mol Biol 48:183–200

    Article  PubMed  CAS  Google Scholar 

  • Petersen K, Leah R, Knudsen S, Cameron-Mills V (2002) Matrix attachment regions (MARs) enhance transformation frequencies and reduce variance of transgene expression in barley. Plant Mol Biol 49:45–58

    Article  PubMed  CAS  Google Scholar 

  • Phi-Van L, Strätling WH (1988) The matrix attachment regions of the chicken lysozyme gene co-map with the boundaries of the chromatin domain. Embo J 7:655–664

    CAS  Google Scholar 

  • Phi-Van L, von Kries JP, Ostertag W, Strätling WH (1990) The chicken lysozyme 5’ matrix attachment region increases transcription from a heterologous promoter in heterologous cells and dampens position effects on the expression of transfected genes. Mol Cell Biol 10:2302–2307

    PubMed  CAS  Google Scholar 

  • Schöffl F, Schröder G, Kliem M, Rieping M (1993) An SAR sequence containing 395 bp DNA fragment mediates enhanced, gene-dosage-correlated expression of chimaeric heat shock gene in transgenic tobacco plants. Transgenic Res 2:93–100

    Article  PubMed  Google Scholar 

  • Sidorenko L, Bruce W, Maddock S, Tagliani L., Li X, Daniels M, Peterson T (2003) Functional analysis of two matrix attachment region (MAR) elements in transgenic maize plants. Transgenic Res 12:137–54

    Article  PubMed  CAS  Google Scholar 

  • Singh GB, Kramer JA, Krawetz SA (1997) Mathematical model to predict regions of chromatin attachment to the nuclear matrix. Nucleic Acids Res 25:1419–1425

    Article  PubMed  CAS  Google Scholar 

  • Srivastava V, Ariza-Nieto M, Wilson A (2004) Cre-mediated site-specific gene integration for consistent transgene expression in rice. Plant Biotechnol J 2:169–179

    Article  PubMed  CAS  Google Scholar 

  • Ülker B, Allen GC, Thompson WF, Spiker S, Weissinger AK (1999) A tobacco matrix attachment region reduces the loss of transgene expression in the progeny of transgenic tobacco plants. Plant J 18:253–263

    Article  Google Scholar 

  • Vain P, Worland B, Kohli A, Snape W, Christou P, Allen GC, Thompson WF (1999) Matrix attachment regions increase transgene expression levels and stability in transgenic rice plants and their progeny. Plant J 18:233–242

    Article  CAS  Google Scholar 

  • Valvekens D, Van Montagu M, Van Lijsebettens M (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis root explants using kanamycin selection. Proc Natl Acad Sci USA 85:5536–5540

    Article  PubMed  CAS  Google Scholar 

  • van der Geest AHM, Hall GE Jr, Spiker S, Hall TC (1994) The β-phaseolin gene is flanked by matrix attachment regions. Plant J 6:413–423

    Article  Google Scholar 

  • Xue H, Yang Y-T, Wu C-A, Yang G-D, Zhang M-M, Zheng C-C (2005) TM2, a novel strong matrix attachment region isolated from tobacco, increases transgene expression in transgenic rice calli and plants. Theor Appl Genet 110:620–627

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Hervé Vaucheret (INRA Versailles) for providing seeds of the sgs-mutants. This work was supported partly by a grant from the Flanders Interuniversity Institute for Biotechnology (VIB-PRJ3) and partly by a grant from the Fonds voor Wetenschappelijk Onderzoek Vlaanderen (FWO-G.0118.01). K.M.J. Butaye is indebted to the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen) for a predoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno P. A. Cammue.

Additional information

Miguel F.C. De Bolle, Katleen M.J. Butaye Contributed equally to this work

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Bolle, M.F.C., Butaye, K.M.J., Goderis, I.J.W.M. et al. The influence of matrix attachment regions on transgene expression in Arabidopsis thaliana wild type and gene silencing mutants. Plant Mol Biol 63, 533–543 (2007). https://doi.org/10.1007/s11103-006-9107-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-9107-x

Keywords

Navigation