Skip to main content

Advertisement

Log in

Functional characterization of a gene encoding a dual domain for uridine kinase and uracil phosphoribosyltransferase in Arabidopsis thaliana

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Uridine kinase (UK) and uracil phosphoribosyltransferase (UPRT) are enzymes catalyzing the formation of uridine 5′-monophosphate (UMP) from uridine and adenine 5′-triphosphate (ATP) and from uracil and phosphoribosyl-α-1-pyrophosphate (PRPP), respectively, in the pyrimidine salvage pathway. Here, we report the characterization and functional analysis of a gene AtUK/UPRT1 from Arabidopsis thaliana. Sequencing of an expressed sequence tag clone of this gene revealed that it contains a full-length open reading frame of 1461 nucleotides and encodes a protein with a molecular mass of approximately 53 kDa. The sequence analysis revealed that the N-terminal region of AtUK/UPRT1 contains a UK domain and the C-terminal region consists of a UPRT domain. Expression of AtUK/UPRT1 in upp and upp-udk mutants of Escherichia coli supplied with 5-fluorouracil (5-FU) and 5-fluorouridine (5-FD) led to growth inhibition. Identical results were obtained with 5-FD and 5-FU treatments when the UK and UPRT domains were separated by the introduction of translation initiation and stop codons prior to complementation into the upp-udk and upp mutants. These results suggest that the AtUK/UPRT1 product can use uracil and uridine as substrates for the production of UMP. We also investigated the function of AtUK/UPRT1 in an Arabidopsis mutant. The wild-type Arabidopsis plants showed drastic growth retardation when they were treated with 5-FU and 5-FD while the growth of atuk/uprt1 mutant plants was not significantly affected. These findings confirm that AtUK/UPRT1 has a dual role in coding for both uridine kinase and uracil phosphoribosyltransferase that form UMP through the pyrimidine salvage pathway in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

5-FU:

5-Fluorouracil

5-FD:

5-Fluorouridine

UK:

Uridine kinase

UPRT:

Uracil phosphoribosyltransferase

UMP:

Uridine 5′-monophosphate

ATP:

Adenine 5′-triphosphate

PRPP:

Phosphoribosyl-α-1-pyrophosphate

5-FUMP:

5-Fluoro-uridine monophosphate

5-FUDP:

5-Fluoro-uridine diphosphate

5-FUTP:

5-Fluoro-uridine triphosphate

References

  • Anderson PH, Smith JM, Mygind B (1992) Characterization of the upp gene encoding uracil phosphoribosyltransferase of Escherichia coli K12. Eur J Biochem 204:51–56

    Article  Google Scholar 

  • Anderson C, Parkinson F (1997) Potential signaling roles for UTP and UDP: sources, regulation and release of uracil nucleotides. Trends Pharmacol Sci 18:387–392

    PubMed  CAS  Google Scholar 

  • Ashihara H, Stasolla C, Loukanina N, Thorpe TA (2000) Purine and pyrimidine metabolism in cultured white spruce (Picea glauca) cells: metabolic fate of 14C-labelled precursors and activity of key enzymes. Physiol Plant 108:25–33

    CAS  Google Scholar 

  • Bassett EV, Bouchet BY, Carr JM, Williamson CL, Slocum RD (2003) PALA-mediated pyrimidine starvation increases expression of aspartate transcarbamoylase (pyrB) in Arabidopsis seedlings. Plant Physiol Biochem 41: 695–703

    Article  CAS  Google Scholar 

  • Bismuth G, Thuillier L, Perignon JL, Carter PH (1982) Uridine as the only alternative to pyrimidine de novo synthesis in rat T-lymphocytes. FEBS Lett 148:135–139

    Article  PubMed  CAS  Google Scholar 

  • Carter D, Donald RGK, Roos D, Ullman B (1997) Expression, purification, and characterization of uracil phosphoribosyltransferse from Toxoplasma gondii. Mol Biochem Parasitol 87:137–144

    Article  PubMed  CAS  Google Scholar 

  • Chabber BA, Allegra CJ, Crut GA, Calabresi P (1996) Antineoplastic agents. In: Handman JG, Limbird LE, Molinof PB, Rudon RW, Gilman AG (Eds) Goodman and gilman’s the pharmacological basis of therapeutics. McGraw-Hill, New York, pp 1247–1257

    Google Scholar 

  • Denton JE, Lui MS, Aoki T, Sebolt J, Takeda E, Eble JN, Glover JL, Weber G (1982) Enzymology of pyrimidine and carbohydrate metabolism in human colon carcinomas. Cancer Res 42:1176–1183

    PubMed  CAS  Google Scholar 

  • Fast R, Sköld O (1977) Biochemical mechanism of uracil uptatake regulation in Escherichia coli B. J Biol Chem 252:7620–7624

    PubMed  CAS  Google Scholar 

  • Geigenberger P, Regierer B, Nunes-Nesi A, Leisse A, Urbanczyk-Wochniak E, Springer F, van Dongen JT, Kossmann J, Fernie AR (2005) Inhibition of de novo pyrimidine synthesis in growing potato tubers leads to a compensatory stimulation of the pyrimidine salvage pathway and a subsequent increase in biosynthetic performance. Plant Cell 17(7):2077–2088

    Article  PubMed  CAS  Google Scholar 

  • Hammer-Jespersen K, Munch-Petersen A (1973) Mutants of Escherichia coli unable to metabolize cytidine: isolation and characterization. Mol Gen Genet 126:177–186

    Article  PubMed  CAS  Google Scholar 

  • Henderson JF, Paterson ARP (Eds) (1973) Nucleotide metabolism-an introduction. Academic Press, New York

  • Higgins DG, Bleasby AJ, Fuchs R (1992) ClustalV: improved software for multiple sequence alignment. Comput Appl Biosci 8:189–191

    PubMed  CAS  Google Scholar 

  • Iltzsch MH, Tankersley KO (1994) Structure-activity relationship of ligands of uracil phosphoribosyltransferase from Toxoplasma gondii. Biochem Pharmacol 48:781–792

    Article  PubMed  CAS  Google Scholar 

  • Kafer C, Zhou L, Santos D, Guirgis A, Weers B (2004) Regulation of pyrimidine metabolism in plants. Front Biosci 9:1611–1625

    PubMed  CAS  Google Scholar 

  • Kanamori-Fukuda I, Ashihara H, Komamine A (1981) Pyrimidine nucleotide biosynthesis in Vinca rosea cells: changes in the activity of de novo and salvage pathways during growth in a suspension culture. J Exp Bot 32:69–78

    Article  CAS  Google Scholar 

  • Karle JM, Anderson LW, Cysyk RL (1984) Effect of plasma concentrations of uridine on pyrimidine biosynthesis in cultured L1210 cells. J Biol Chem 259:67–72

    PubMed  CAS  Google Scholar 

  • Kashuba E, Kashuba V, Sandalova T, Klein G, Szekely L (2002) Epstein-Barr virus encoded nuclear protein EBNA-3 binds a novel human uridine kinase/uracil phosphoribosyltransferase. BMC Cell Biol 3:23–34

    Article  PubMed  Google Scholar 

  • Katahira R, Ashihara H (2002) Profiles of pyrimidine biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum L.) tubers. Planta 215:821–828

    Article  PubMed  CAS  Google Scholar 

  • Kern L (1990) The URK1 gene of Saccharomyces cerevisiae encoding uridine kinase. Nucleic Acids Res 18:5279

    Article  PubMed  CAS  Google Scholar 

  • Kern L, de Montigny J, Jund R, Lacroute F (1990) The FUR1 gene of Saccharomyces cerevisiae: cloning, structure and expression of wild-type and mutant alleles. Gene 88:149–157

    Article  PubMed  CAS  Google Scholar 

  • Kurtz JE, Exinger F, Erbs P, Jund R (1999) New insights into the pyrimidine salvage pathway of Saccharomyces cerevisiae: requirement of six genes of cytidine metabolism. Curr Genet 36:130–136

    Article  PubMed  CAS  Google Scholar 

  • Maturin LJ, Curtiss R (1981) Role of ribonucleic acid synthesis in conjugational transfer of chromosal and plasmid deoxyribonucleic acids. J Bacteriol 146:552–563

    PubMed  CAS  Google Scholar 

  • Miyagi T, Koshida K, Hori O, Konaka H, Katoh H, Kitagawa Y, Mizokami A, Egawa M, Ogawa S, Hamada H, Namiki M (2003) Gene therapy for prostate cancer using the cytosine deaminase/uracil phosphoribosyltransferase suicide system. J Gene Med 5:30–37

    Article  PubMed  CAS  Google Scholar 

  • Moffatt BA, Ashihara H (2002) Purine and pyrimidine nucleotide synthesis and metabolism. In: Somerville CR, Meyerowitz EM (Eds) The arabidopsis book, American society of plant biologists, Rockville, MD. doi: 10.1199/tab.0018, http://www.aspb.org/publications/arabidopsis/

  • Munch-Petersen A, Mygind B (1983) Transport of nucleic acid precursors. In: Munch-Petersen A (eds), Metabolism of nucleotides, nucleosides and nucleobases in microorganism. Academic Press, New York, pp 259–305

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:437–497

    Article  Google Scholar 

  • Nakamura H, Sekiguchi H, Akiyama S, Hamada H, Fujiwara M, Kasai Y, Ito K, Nakao A (2001) Adenovirus-mediated transduction of Escherichia coli uracil phosphoribosyltransferase gene increases the sensitivity of esophageal cancer cells to 5-fluorouracil. Surg Today 31:785–790

    Article  PubMed  CAS  Google Scholar 

  • Neuhard J, Thomassen E (1976) Altered deoxyribonucleotide pools in P2 reductants of Escherichia coli K-12 due to deletion of the dcd gene. J Bacteriol 126:999–1001

    PubMed  CAS  Google Scholar 

  • Neuhard J (1983) Utilization of preformed pyrimidine bases and nucleotides. In: Munch-Petersen A (eds), Metabolism of nucleotides, nucleosides and nucleobases in microorganism. Academic Press, New York, pp 95–148

    Google Scholar 

  • Neuhard J, Nygaard P (1987) Biosynthesis and conversions of nucleotides: purine and pyrimidines. In: Neidhardt FC (eds), Escherichia coli and Salmonella typhimurium: cellular and Molecular Biology, American Society of Microbiologists, Washington DC, pp 445–473

    Google Scholar 

  • Neuhard J, Tarpo L (1993) Location of the udk gene on the physical map of Escherichia coli. J Bacteriol 175:5742–5743

    PubMed  CAS  Google Scholar 

  • Oh MH, Kim C, Kim S-G (1994) Changes of protein patterns during induction of the first cell divisions in petunia (Petunia hybrida) protoplast cultures. J Plant Physiol 144:555–561

    CAS  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophyll a and b with four different solvents: verification of the concentration of chlorophyll by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    CAS  Google Scholar 

  • Pritchard RH, Ahmad SI (1971) Fluorouracil and the isolation of mutants lacking uridine phosphorylase in Escherichia coli: location of the gene. Mol Gen Genet 111:84–88

    Article  PubMed  CAS  Google Scholar 

  • Ropp P, Traut T (1996) Cloning and expression of cDNA encoding uridine kinase from mouse brain. Arch Biochem Biophys 336:105–112

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (Eds) (1989) Molecular cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

  • Schröder M, Giermann N, Zrenner R (2005) Functional analysis of the pyrimidine de novo synthesis pathway in solanaceous species. Plant Physiol 138(4):1926–1938

    Article  PubMed  CAS  Google Scholar 

  • Sheen J (2002) A transient expression assay using Arabidopsis mesophyll protoplasts. http://genetics.mgh.harvard.edu/sheenweb/

  • So NNC, Wong PCL, Ko RC (1992) Precursors of pyrimidine nucleotide biosynthesis for gravid Angiostrongylus cantonensis (Nematoda: Metastrongyloidea). Int J Parasitol 22:427–423

    Article  PubMed  CAS  Google Scholar 

  • Stasolla C, Katahira R, Thorpe TA, Ashihara H (2003) Purine and pyrimidine nucleotide metabolism in higher plants. J Plant Physiol 160:1271–1295

    Article  PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Wagner AI, Backer KG (1992) Dynamics of nucleotides in plants studied on a cellular basis. Int Rev Cytol 134:1–84

    Article  CAS  Google Scholar 

  • Weber G, Shiotani T, Kizaki H, Tzeng D, Williams JC, Gladstone N (1978) Biochemical strategy of the genome as expressed in regulation of pyrimidine metabolism. Adv Enzyme Regul 16:3–19

    Article  CAS  Google Scholar 

  • Wheeler DL, Church DM, Lash AE, Leipe DD, Madden TL, Pontius JU, Schuler GD, Schriml LM, Tatusova TA, Wagner L, Rapp BA (2002) Database resources of the National Center for Biotechnology Information: 2002 update. Nucleic Acids Res 30:13–16

    Article  PubMed  CAS  Google Scholar 

  • White JA, Todd J, Newman T, Focks N, Girke T, Martinez de, Ilarduya O, Jaworski JG, Ohlrogge J, Benning C (2000) A new set of Arabidopsis expressed sequence tags from developing seeds. The metabolic pathway from carbohydrates to seed oil. Plant Physiol 124:1582–1594

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Prof. Dr. Donald J. Armstrong, Oregon State University, Corvallis, OR, USA for his valuable suggestions and critical reviewing of this manuscript. We like to thank Arabidopsis Biological Resource Center (ABRC) at the Ohio State University and E. coli Genetic Stock Center (CGSC) at Yale University for providing an EST clone (BE521919) and several E. coli upp, and upp-udk mutants, respectively. This work was supported by a Brain Korea 21 Research Fellowship from the Ministry of Education and Human Resources Development and BioGreen 21 from Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Gu Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islam, M.R., Kim, H., Kang, SW. et al. Functional characterization of a gene encoding a dual domain for uridine kinase and uracil phosphoribosyltransferase in Arabidopsis thaliana . Plant Mol Biol 63, 465–477 (2007). https://doi.org/10.1007/s11103-006-9101-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-9101-3

Keywords

Navigation