Skip to main content
Log in

Transcriptomic adaptations in rice suspension cells under sucrose starvation

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Sugar is an important resource for energy generation and developmental regulation in plants, and sucrose starvation causes enormous changes in cellular morphology, enzyme activities and gene expression. Genome-wide gene expression profiling provides a comprehensive knowledge of gene expression under nutrient depletion and senescence; however, that of a monocot model plant, rice, under sucrose depletion is still under investigation. Here, the time-course monitoring of gene expression profiles in sucrose-starved rice (Oryza sativa cv Tainung67) suspension cells was investigated by 21495 probes contained in Agilent rice chip. In sucrose-starved cells, the induced vacuolar biogenesis coincided with significantly upregulated transcripts of H+-pyrophosphatase, δ-TIP, one putative α-TIP, several vacuolar proteases and proteinase inhibitors, and one OsATG3. To survey the overall metabolic adaptations under sucrose depletion, the genes with significantly altered expression level were incorporated into multiple metabolic pathways. Most genes encoding enzymes involved in biosynthesis and degradation pathways of various macromolecules were comprehensively down- and upregulated, respectively, with sucrose starvation. Transcriptional regulation of gene expression is important for physiological adaptations to environmental stress, and many transcription factors, including bZIPs, NACs, and WRKY, showed significant increase in transcriptional level under sucrose starvation. Concurrently, statistical analysis revealed that their corresponding consensus cis-elements, such as ABA-responsive element, CACG, ACI, ACII and CTTATCC, were frequently found in the promoter regions of many sucrose starvation-upregulated genes. Particle bombardment-mediated and luciferase activity-based transient promoter assays revealed the CTTATCC, derived form TATCCA, and the AC motifs to be promising sucrose-starvation responsive activators in rice suspension cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmed SU, Rojo E, Kovaleva V et al (2000) The plant vacuolar sorting receptor AtELP is involved in transport of NH(2)-terminal propeptide-containing vacuolar proteins in Arabidopsis thaliana. J Cell Biol 149(7):1335–1344

    Article  PubMed  CAS  Google Scholar 

  • Aubert S, Alban C, Bligny R et al (1996a) Induction of β-methylcrotonyl-coenzyme A carboxylase in higher plant cells during carbohydrate starvation: evidence for a role of MCCase in leucine catabolism. FEBS Lett 383(3):175–180

    Article  CAS  Google Scholar 

  • Aubert S, Gout E, Bligny R et al (1996b) Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: control by the supply of mitochondria with respiratory substrates. J Cell Biol 133(6):1251–1263

    Article  CAS  Google Scholar 

  • Brouquisse R, Gaudillere JP, Raymond P (1998) Induction of a carbon-starvation-related proteolysis in whole maize plants submitted to Light/Dark cycles and to extended darkness. Plant Physiol 117(4):1281–1291

    Article  PubMed  CAS  Google Scholar 

  • Brouquisse R, James F, Pradet A et al (1992a) Asparagine metabolism and nitrogen distribution during protein degradation in sugar-starved maize root tips. Planta 188:384–395

    Article  CAS  Google Scholar 

  • Brouquisse R, James F, Pradet A et al (1992b) Sugar levels modulate differential expression of maize sucrose synthase genes. Plant Cell 4:59–69

    Article  Google Scholar 

  • Brouquisse R, James F, Raymond P et al (1991) Study of glucose starvation in excised maize root tips. Plant Physiol 96:619–626

    PubMed  CAS  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E et al (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42(4):567–585

    Article  PubMed  CAS  Google Scholar 

  • Busch W, Wunderlich M, Schoffl F (2005) Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. Plant J 41(1):1–14

    Article  PubMed  CAS  Google Scholar 

  • Casaretto J, Ho TH (2003) The transcription factors HvABI5 and HvVP1 are required for the abscisic acid induction of gene expression in barley aleurone cells. Plant Cell 15(1):271–284

    Article  PubMed  CAS  Google Scholar 

  • Chen MH, Liu LF, Chen YR et al (1994) Expression of α-amylases, carbohydrate metabolism, and autophagy in cultured rice cells is coordinately regulated by sugar nutrient. Plant J 6(5):625–636

    Article  PubMed  CAS  Google Scholar 

  • Collinge M, Boller T (2001) Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding. Plant Mol Biol 46(5):521–529

    Article  PubMed  CAS  Google Scholar 

  • Contento AL, Kim SJ, Bassham DC (2004) Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation. Plant Physiol 135(4):2330–2347

    Article  PubMed  CAS  Google Scholar 

  • Dennis PB, Jaeschke A, Saitoh M et al (2001) Mammalian TOR: a homeostatic ATP sensor. Science 294(5544):1102–1105

    Article  PubMed  CAS  Google Scholar 

  • Deprost D, Truong HN, Robaglia C et al (2005) An Arabidopsis homolog of RAPTOR/KOG1 is essential for early embryo development. Biochem Biophys Res Commun 326(4):844–850

    Article  PubMed  CAS  Google Scholar 

  • Dieuaide M, Brouquisse R, Pradet A et al (1992) Increased fatty acid beta-oxidation after glucose starvation in maize root tips. Plant Physiol 99:595–600

    PubMed  CAS  Google Scholar 

  • Dieuaide M, Couee I, Pradet A et al (1993) Effects of glucose starvation on the oxidation of fatty acids by maize root tip mitochondria and peroxisomes: evidence for mitochondrial fatty acid beta-oxidation and acyl-CoA dehydrogenase activity in a higher plant. Biochem J 296( Pt 1):199–207

    PubMed  CAS  Google Scholar 

  • Doelling JH, Walker JM, Friedman EM et al (2002) The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. J Biol Chem 277(36):33105–33114

    Article  PubMed  CAS  Google Scholar 

  • Fujiki Y, Yoshikawa Y, Sato T et al (2001) Dark-inducible genes from Arabidopsis thaliana are associated with leaf senescence and repressed by sugars. Physiol Plant 111(3):345–352

    Article  PubMed  CAS  Google Scholar 

  • Fujita M, Fujita Y, Maruyama K et al (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39(6):863–876

    Article  PubMed  CAS  Google Scholar 

  • Graham IA, Denby KJ, Leaver CJ (1994) Carbon catabolite repression regulates glyoxylate cycle gene expression in cucumber. Plant Cell 6(5):761–772

    Article  PubMed  CAS  Google Scholar 

  • Hanaoka H, Noda T, Shirano Y et al (2002) Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol 129(3):1181–1193

    Article  PubMed  CAS  Google Scholar 

  • Hatton D, Sablowski R, Yung MH et al (1995) Two classes of cis sequences contribute to tissue-specific expression of a PAL2 promoter in transgenic tobacco. Plant J 7(6):859–876

    Article  PubMed  CAS  Google Scholar 

  • Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18(16):1926–1945

    Article  PubMed  CAS  Google Scholar 

  • Hegedus D, Yu M, Baldwin D et al (2003) Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Mol Biol 53(3):383–397

    Article  PubMed  CAS  Google Scholar 

  • Hobo T, Asada M, Kowyama Y et al (1999a) ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent. Plant J 19(6):679–689

    Article  CAS  Google Scholar 

  • Hobo T, Kowyama Y, Hattori T (1999b) A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Proc Natl Acad Sci USA 96(26):15348–15353

    Article  CAS  Google Scholar 

  • Ishizaki K, Larson TR, Schauer N et al (2005) The critical role of Arabidopsis electron-transfer flavoprotein:ubiquinone oxidoreductase during dark-induced starvation. Plant Cell 17(9):2587–600

    Article  PubMed  CAS  Google Scholar 

  • Izawa T, Foster R, Chua NH (1993) Plant bZIP protein DNA binding specificity. J Mol Biol 230(4):1131–1144

    Article  PubMed  CAS  Google Scholar 

  • Jauh GY, Phillips TE, Rogers JC (1999) Tonoplast intrinsic protein isoforms as markers for vacuolar functions. Plant Cell 11(10):1867–1882

    Article  PubMed  CAS  Google Scholar 

  • Ketelaar T, Voss C, Dimmock SA et al (2004) Arabidopsis homologues of the autophagy protein Atg8 are a novel family of microtubule binding proteins. FEBS Lett 567(2–3):302–306

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Kang JY, Cho DI et al (2004) ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J 40(1):75–87

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Yamada K, Hiraiwa N et al (1999) Vacuolar processing enzyme is up-regulated in the lytic vacuoles of vegetative tissues during senescence and under various stressed conditions. Plant J 19(1):43–53

    Article  PubMed  CAS  Google Scholar 

  • Klionsky DJ (2004) Autophagy: an overview. In: Klionsky DJ (ed) Autophagy. Landes Bioscience, Georgetown, pp 1–9

    Google Scholar 

  • Koch KE (1996) Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 47:509–540

    Article  PubMed  CAS  Google Scholar 

  • Laloi C, Mestres-Ortega D, Marco Y et al (2004) The Arabidopsis cytosolic thioredoxin h5 gene induction by oxidative stress and its W-box-mediated response to pathogen elicitor. Plant Physiol 134(3):1006–1016

    Article  PubMed  CAS  Google Scholar 

  • Lan L, Li M, Lai Y et al (2005) Microarray analysis reveals similarities and variations in genetic programs controlling pollination/fertilization and stress responses in rice (Oryza sativa L.). Plant Mol Biol 59(1):151–164

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Hubel A, Schoffl F (1995) Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Plant J 8(4):603–612

    Article  PubMed  CAS  Google Scholar 

  • Lee YC, Lu CA, Chen PW et al (2003) An ABA-responsive bZIP protein, OsBZ8, mediates sugar repression of α-amylase gene expression. Physiol Plantarum 119:78–86

    Article  CAS  Google Scholar 

  • Li CY, Weiss D, Goldschmidt EE (2003) Effects of carbohydrate starvation on gene expression in citrus root. Planta 217(1):11–20

    PubMed  CAS  Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16(2):319–331

    Article  PubMed  CAS  Google Scholar 

  • Lin JF, Wu SH (2004) Molecular events in senescing Arabidopsis leaves. Plant J 39(4):612–628

    Article  PubMed  CAS  Google Scholar 

  • Lu CA, Ho TH, Ho SL et al (2002) Three novel MYB proteins with one DNA binding repeat mediate sugar and hormone regulation of α-amylase gene expression. Plant Cell 14(8):1963–1980

    Article  PubMed  CAS  Google Scholar 

  • Lu CA, Lim EK, Yu SM (1998) Sugar response sequence in the promoter of a rice α-amylase gene serves as a transcriptional enhancer. J Biol Chem 273(17):10120–10131

    Article  PubMed  CAS  Google Scholar 

  • Mahfouz MM, Kim S, Delauney AJ et al (2006) Arabidopsis TARGET OF RAPAMYCIN interacts with RAPTOR, which regulates the activity of S6 kinase in response to osmotic stress signals. Plant Cell 18(2):477–490

    Article  PubMed  CAS  Google Scholar 

  • Mare C, Mazzucotelli E, Crosatti C et al (2004) Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley. Plant Mol Biol 55(3):399–416

    Article  PubMed  CAS  Google Scholar 

  • Menand B, Desnos T, Nussaume L et al (2002) Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc Natl Acad Sci USA 99(9):6422–6427

    Article  PubMed  CAS  Google Scholar 

  • Miao Y, Laun T, Zimmermann P et al (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55(6):853–867

    PubMed  CAS  Google Scholar 

  • Moriyasu Y, Hattori M, Jauh GY et al (2003) Alpha tonoplast intrinsic protein is specifically associated with vacuole membrane involved in an autophagic process. Plant Cell Physiol 44(8):795–802

    Article  PubMed  CAS  Google Scholar 

  • Moriyasu Y, Klionsky DJ (2004) Autophagy in plant. In: Klionsky DJ (ed) Autophagy. Landes Bioscience, Georgetown, pp 208–215

    Google Scholar 

  • Moriyasu Y, Ohsumi Y (1996) Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Physiol 111(4):1233–1241

    PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  • Noda T, Ohsumi Y (2004) Macroautophagy in yeast. In: Klionsky DJ (ed) Autophagy. Landes Bioscience, Georgetown, pp 70–83

    Google Scholar 

  • Olsen AN, Ernst HA, Leggio LL et al (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10(2):79–87

    Article  PubMed  CAS  Google Scholar 

  • Panchuk II, Volkov RA, Schoffl F (2002) Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol 129(2):838–853

    Article  PubMed  CAS  Google Scholar 

  • Plaxton WC (1996) The organization and regulation of plant glycolysis. Annu Rev Plant Physiol Plant Mol Biol 47:185–214

    Article  PubMed  CAS  Google Scholar 

  • Prandl R, Hinderhofer K, Eggers-Schumacher G et al (1998) HSF3, a new heat shock factor from Arabidopsis thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plants. Mol Gen Genet 258(3):269–278

    Article  PubMed  CAS  Google Scholar 

  • Project IRGS (2005) The map-based sequence of the rice genome. Nature 436(7052):793–800

    Google Scholar 

  • Qu LJ, Chen J, Liu M et al (2003) Molecular cloning and functional analysis of a novel type of Bowman-Birk inhibitor gene family in rice. Plant Physiol 133(2):560–570

    Article  PubMed  CAS  Google Scholar 

  • Ren T, Qu F, Morris TJ (2000) HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus. Plant Cell 12(10):1917–1926

    Article  PubMed  CAS  Google Scholar 

  • Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell 14(Suppl):S185–S205

    PubMed  CAS  Google Scholar 

  • Rose TL, Bonneau L, Der C et al (2006) Starvation-induced expression of autophagy-related genes in Arabidopsis. Biol Cell 98(1):53–67

    Article  PubMed  CAS  Google Scholar 

  • Ryan CA (1990) Proteinase inhibitors in plants: genes for improving defenses against insects and pathogens. Annu Rev phytophathol 28:425–449

    Article  CAS  Google Scholar 

  • Sablowski RW, Meyerowitz EM (1998) A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92(1):93–103

    Article  PubMed  CAS  Google Scholar 

  • Sablowski RW, Moyano E, Culianez-Macia FA et al (1994) A flower-specific Myb protein activates transcription of phenylpropanoid biosynthetic genes. Embo J 13(1):128–137

    PubMed  CAS  Google Scholar 

  • Sambrook JE, Fritsch ET, Maniatis R (1989) Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory, New York

  • Scheible WR, Morcuende R, Czechowski T et al (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol 136(1):2483–2499

    Article  PubMed  CAS  Google Scholar 

  • Schluepmann H, Pellny T, van Dijken A et al (2003) Trehalose 6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana. Proc Natl Acad Sci USA 100(11):6849–6854

    Article  PubMed  CAS  Google Scholar 

  • Schmelzle T, Hall MN (2000) TOR, a central controller of cell growth. Cell 103(2):253–262

    Article  PubMed  CAS  Google Scholar 

  • Schuster J, Binder S (2005) The mitochondrial branched-chain aminotransferase (AtBCAT-1) is capable to initiate degradation of leucine, isoleucine and valine in almost all tissues in Arabidopsis thaliana. Plant Mol Biol 57(2):241–254

    Article  PubMed  CAS  Google Scholar 

  • Shen Q, Ho T. H (1997) Promoter switches specific for abscisic acid (ABA)-induced gene expression in cereals. Physiol. Plantarum 101:653–664

    Article  CAS  Google Scholar 

  • Sheu JJ, Yu TS, Tong WF et al (1996) Carbohydrate starvation stimulates differential expression of rice α-amylase genes that is modulated through complicated transcriptional and posttranscriptional processes. J Biol Chem 271(43):26998–27004

    Article  PubMed  CAS  Google Scholar 

  • Slavikova S, Shy G, Yao Y et al (2005) The autophagy-associated Atg8 gene family operates both under favourable growth conditions and under starvation stresses in Arabidopsis plants. J Exp Bot 56(421):2839–2849

    Article  PubMed  CAS  Google Scholar 

  • Sodek L, Wilson CM (1973) Metabolism of lysine and leucine derived from storage protein during the germination of maize. Biochim Biophys Acta 304(2):353–362

    PubMed  CAS  Google Scholar 

  • Souer E, van Houwelingen A, Kloos D et al (1996) The No Apical Meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85(2):159–170

    Article  PubMed  CAS  Google Scholar 

  • Stewart CR, Beever H (1967) Gluconeogenesis from amino acids in germinating castor bean endosperm and its role in transport to the embryo. Plant Physiol 42:1587–1595

    Article  PubMed  CAS  Google Scholar 

  • Takada S, Hibara K, Ishida T et al (2001) The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 128(7):1127–1135

    PubMed  CAS  Google Scholar 

  • Tassi F, Maestri E, Restivo FM et al (1992) The effects of carbon starvation on cellular metabolism and protein and RNA synthesis in Gerbera callus cultures. Plant Sci 83:127–136

    Article  CAS  Google Scholar 

  • Thimm O, Blasing O, Gibon Y et al (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37(6):914–939

    Article  PubMed  CAS  Google Scholar 

  • Thompson AR, Doelling JH, Suttangkakul A et al (2005) Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol 138(4):2097–2110

    Article  PubMed  CAS  Google Scholar 

  • Tran LS, Nakashima K, Sakuma Y et al (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16(9):2481–2498

    Article  PubMed  CAS  Google Scholar 

  • Tymowska-Lalanne Z, Kreis M (1998) Expression of the Arabidopsis thaliana invertase gene family. Planta 207(2):259–265

    Article  PubMed  CAS  Google Scholar 

  • Umemura T, Perata P, Futsuhara Y et al (1998) Sugar sensing and α-amylase gene repression in rice embryos. Planta 204(4): 420–428

    Article  PubMed  CAS  Google Scholar 

  • Vroemen CW, Mordhorst AP, Albrecht C et al (2003) The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell 15(7):1563–1577

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Liang Y, Li C et al (2005) Microarray analysis of gene expression involved in anther development in rice (Oryza sativa L.). Plant Mol Biol 58(5):721–737

    Article  PubMed  CAS  Google Scholar 

  • Xie Q, Frugis G, Colgan D et al (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14(23):3024–3036

    Article  PubMed  CAS  Google Scholar 

  • Xie Q, Sanz-Burgos AP, Guo H et al (1999) GRAB proteins, novel members of the NAC domain family, isolated by their interaction with a geminivirus protein. Plant Mol Biol 39(4):647–656

    Article  PubMed  CAS  Google Scholar 

  • Yi K, Wu Z, Zhou J et al (2005) OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol 138(4):2087–2096

    Article  PubMed  CAS  Google Scholar 

  • Yoshimoto K, Hanaoka H, Sato S et al (2004) Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 16(11):2967–2983

    Article  PubMed  CAS  Google Scholar 

  • Yu SM (1999a) Cellular and genetic responses of plants to sugar starvation. Plant Physiol 121(3):687–693

    Article  CAS  Google Scholar 

  • Yu SM (1999b) Regulation of α-amylase gene expression. In: Shimamoto K (ed) Molecular biology of rice, Springer, Tokyo, pp 161–178

    Google Scholar 

  • Yu SM, Kuo YH, Sheu G et al (1991) Metabolic derepression of α-amylase gene expression in suspension-cultured cells of rice. J Biol Chem 266(31):21131–21137

    PubMed  CAS  Google Scholar 

  • Zhang W, Ruan J, Ho TH et al (2005) Cis-regulatory element based targeted gene finding: genome-wide identification of abscisic acid- and abiotic stress-responsive genes in Arabidopsis thaliana. Bioinformatics 21(14):3074–3081

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. Tuan-hua Ho and Shu-Hsing Wu for critically reading and providing valuable comments on the manuscript. We also thank Ms. Shu-Jen Chou, microarray facility, and Dr. Wann-Neng Jane, cell biology core facility, Institute of Plant and Microbial Biology, Academia Sinica, for technical support with the microarray and TEM experiments. This research is supported by research grants from Academia Sinica (Taiwan), National Science Council (NSC 93-2311-B-001-010- and 94-2311-B-001 -054 -, Taiwan), and the Li Foundation (USA) to G.-Y. Jauh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Yuh Jauh.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, HJ., Wan, AR., Hsu, CM. et al. Transcriptomic adaptations in rice suspension cells under sucrose starvation. Plant Mol Biol 63, 441–463 (2007). https://doi.org/10.1007/s11103-006-9100-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-9100-4

Keywords

Navigation