Skip to main content
Log in

Telomere-length regulation in inter-ecotype crosses of Arabidopsis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Telomeres, the nucleoprotein complexes at the ends of eukaryotic chromosomes, are maintained at a species-specific equilibrium length. Arabidopsis thaliana is a self-fertilizing plant and different geographical isolates or ecotypes show differing telomere-lengths. We have exploited this telomere-length polymorphism between Arabidopsis ecotypes to investigate the genetic regulation of telomere length by analysing telomere lengths in 16 different inter-ecotype crosses between plants with differing telomere sizes. With two exceptions, the inter-ecotype hybrid plants present a new telomere-length set point, intermediate between that of the two parents. A regulation mechanism thus shortens the longer and lengthens the shorter telomeres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • d’Adda di Fagagna F, Hande MP, Tong WM, Roth D, Lansdorp PM, Wang ZQ, Jackson SP (2001) Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells. Curr Biol 11:1192–1196

    Article  PubMed  CAS  Google Scholar 

  • Baumann P, Cech TR (2001) Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292:1171–1175

    Article  PubMed  CAS  Google Scholar 

  • Baumann P, Podell E, Cech TR (2002) Human Pot1 (protection of telomeres) protein: cytolocalization, gene structure, and alternative splicing. Mol Cell Biol 22:8079–8087

    Article  PubMed  CAS  Google Scholar 

  • Bertuch AA, Lundblad V (2003) The Ku heterodimer performs separable activities at double-strand breaks and chromosome termini. Mol Cell Biol 23:8202–8215

    Article  PubMed  CAS  Google Scholar 

  • Boulton SJ, Jackson SP (1998) Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J 17:1819–1828

    Article  PubMed  CAS  Google Scholar 

  • Bundock P, van Attikum H, Hooykaas P (2002) Increased telomere length and hypersensitivity to DNA damaging agents in an Arabidopsis KU70 mutant. Nucleic Acids Res 30:3395–3400

    Article  PubMed  CAS  Google Scholar 

  • Burr B, Burr FA, Matz EC, Romero-Severson J (1992) Pinning down loose ends: mapping telomeres and factors affecting their length. Plant Cell 4:953–960

    Article  PubMed  CAS  Google Scholar 

  • Chai W, Ford LP, Lenertz L, Wright WE, Shay JW (2002) Human Ku70/80 associates physically with telomerase through interaction with hTERT. J Biol Chem 277:47242–47247

    Article  PubMed  CAS  Google Scholar 

  • Chandra A, Hughes TR, Nugent CI, Lundblad V (2001) Cdc13 both positively and negatively regulates telomere replication. Genes Dev 15:404–414

    Article  PubMed  CAS  Google Scholar 

  • Cheung I, Schertzer M, Baross A, Rose AM, Lansdorp PM, Baird DM (2004) Strain-specific telomere length revealed by single telomere length analysis in Caenorhabditis elegans. Nucleic Acids Res 32:3383–3391

    Article  PubMed  CAS  Google Scholar 

  • Ding H, Schertzer M, Wu X, Gertsenstein M, Selig S, Kammori M, Pourvali R, Poon S, Vulto I, Chavez E, Tam PP, Nagy A, Lansdorp PM (2004) Regulation of murine telomere length by Rtel: an essential gene encoding a helicase-like protein. Cell 117:873–886

    Article  PubMed  CAS  Google Scholar 

  • Espejel S, Franco S, Rodriguez-Perales S, Bouffler SD, Cigudosa JC, Blasco MA (2002) Mammalian Ku86 mediates chromosomal fusions and apoptosis caused by critically short telomeres. EMBO J 21:2207–2219

    Article  PubMed  CAS  Google Scholar 

  • Evans SK, Lundblad V (1999) Est1 and Cdc13 as comediators of telomerase access. Science 286:117–120

    Article  PubMed  CAS  Google Scholar 

  • Gallego ME, Jalut N, White CI (2003) Telomerase dependence of telomere lengthening in Ku80 mutant Arabidopsis. Plant Cell 15:782–789

    Article  PubMed  CAS  Google Scholar 

  • Grandin N, Damon C, Charbonneau M (2000) Cdc13 cooperates with the yeast Ku proteins and Stn1 to regulate telomerase recruitment. Mol Cell Biol 20:8397–8408

    Article  PubMed  CAS  Google Scholar 

  • Hardy CF, Sussel L, Shore D (1992) A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Genes Dev 6:801–814

    PubMed  CAS  Google Scholar 

  • Hathcock KS, Hemann MT, Opperman KK, Strong MA, Greider CW, Hodes RJ (2002) Haploinsufficiency of mTR results in defects in telomere elongation. Proc Natl Acad Sci USA 99:3591–3596

    Article  PubMed  CAS  Google Scholar 

  • Hemann MT, Strong MA, Hao LY, Greider CW (2001) The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107:67–77

    Article  PubMed  CAS  Google Scholar 

  • Hsu HL, Gilley D, Blackburn EH, Chen DJ (1999) Ku is associated with the telomere in mammals. Proc Natl Acad Sci USA 96:12454–12458

    Article  PubMed  CAS  Google Scholar 

  • Jaco I, Munoz P, Goytisolo F, Wesoly J, Bailey S, Taccioli G, Blasco MA (2003) Role of mammalian Rad54 in telomere length maintenance. Mol Cell Biol 23:5572–5580

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Kaminker P, Campisi J (1999) TIN2, a new regulator of telomere length in human cells. Nat Genet 23:405–412

    Article  PubMed  CAS  Google Scholar 

  • Kironmai KM, Muniyappa K (1997) Alteration of telomeric sequences and senescence caused by mutations in RAD50 of Saccharomyces cerevisiae. Genes Cells 2:443–455

    Article  PubMed  CAS  Google Scholar 

  • Loayza D, De Lange T (2003) POT1 as a terminal transducer of TRF1 telomere length control. Nature 423:1013–1018

    Article  PubMed  CAS  Google Scholar 

  • Marcand S, Gilson E, Shore D (1997) A protein-counting mechanism for telomere length regulation in yeast. Science 275:986–990

    Article  PubMed  CAS  Google Scholar 

  • Myung K, Ghosh G, Fattah FJ, Li G, Kim H, Dutia A, Pak E, Smith S, Hendrickson EA (2004) Regulation of telomere length and suppression of genomic instability in human somatic cells by Ku86. Mol Cell Biol 24:5050–5059

    Article  PubMed  Google Scholar 

  • Nugent CI, Bosco G, Ross LO, Evans SK, Salinger AP, Moore JK, Haber JE, Lundblad V (1998) Telomere maintenance is dependent on activities required for end repair of double-strand breaks. Curr Biol 8:657–660

    Article  PubMed  CAS  Google Scholar 

  • Porter SE, Greenwell PW, Ritchie KB, Petes TD (1996) The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae. Nucleic Acids Res 24:582–585

    Article  PubMed  CAS  Google Scholar 

  • Ray A, Runge KW (1999) The yeast telomere length counting machinery is sensitive to sequences at the telomere–nontelomere junction. Mol Cell Biol 19:31–45

    PubMed  CAS  Google Scholar 

  • Riha K, Watson JM, Parkey J, Shippen DE (2002) Telomere length deregulation and enhanced sensitivity to genotoxic stress in Arabidopsis mutants deficient in Ku70. EMBO J 21:2819–2826

    Article  PubMed  CAS  Google Scholar 

  • Roy R, Meier B, McAinsh AD, Feldmann HM, Jackson SP (2004) Separation-of-function mutants of yeast Ku80 reveal a Yku80p–Sir4p interaction involved in telomeric silencing. J Biol Chem 279:86–94

    Article  PubMed  CAS  Google Scholar 

  • Samper E, Goytisolo FA, Slijepcevic P, van Buul PP, Blasco MA (2000) Mammalian Ku86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G-strand overhang. EMBO Rep 1:244–252

    Article  PubMed  CAS  Google Scholar 

  • Samper E, Flores JM, Blasco MA (2001) Restoration of telomerase activity rescues chromosomal instability and premature aging in Terc-/- mice with short telomeres. EMBO Rep 2:800–807

    Article  PubMed  CAS  Google Scholar 

  • Shakirov EV, Shippen DE (2004) Length regulation and dynamics of individual telomere tracts in wild-type Arabidopsis. Plant Cell 16:1959–1967

    Article  PubMed  CAS  Google Scholar 

  • Smith S, de Lange T (2000) Tankyrase promotes telomere elongation in human cells. Curr Biol 10:1299–1302

    Article  PubMed  CAS  Google Scholar 

  • Smogorzewska A, De Lange T (2004) Regulation of telomerase by telomeric proteins. Annu Rev Biochem 73:177–208

    Article  PubMed  CAS  Google Scholar 

  • Smogorzewska A, van Steensel B, Bianchi A, Oelmann S, Schaefer MR, Schnapp G, de Lange T (2000) Control of human telomere length by TRF1 and TRF2. Mol Cell Biol 20:1659–1668

    Article  PubMed  CAS  Google Scholar 

  • van Steensel B, de Lange T (1997) Control of telomere length by the human telomeric protein TRF1. Nature 385:740–743

    Article  PubMed  Google Scholar 

  • Stellwagen AE, Haimberger ZW, Veatch JR, Gottschling DE (2003) Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. Genes Dev 17:2384–2395

    Article  PubMed  CAS  Google Scholar 

  • Teixeira MT, Arneric M, Sperisen P, Lingner J (2004) Telomere length homeostasis is achieved via a switch between telomerase extendible and non-extendible states. Cell 117:323–335

    Article  PubMed  CAS  Google Scholar 

  • Walmsley RM, Petes TD (1985) Genetic control of chromosome length in yeast. Proc Natl Acad Sci USA 82:506–510

    Article  PubMed  CAS  Google Scholar 

  • Wotton D, Shore D (1997) A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev 11:748–760

    PubMed  CAS  Google Scholar 

  • Zhu L, Hathcock KS, Hande P, Lansdorp PM, Seldin MF, Hodes RJ (1998) Telomere length regulation in mice is linked to a novel chromosome locus. Proc Natl Acad Sci USA 95:8648–8653

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the recombination mechanisms group and BIOMOVE for their help and discussions. This work was financed by the CNRS, the Université Blaise Pascal and grants from the Commissariat à l’Energie Atomique (Laboratoire de Recherche Conventionné, CEA No. 19V) and a European Community Research grant (QLG2-CT-2001-01397).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Gallego.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maillet, G., White, C.I. & Gallego, M.E. Telomere-length regulation in inter-ecotype crosses of Arabidopsis. Plant Mol Biol 62, 859–866 (2006). https://doi.org/10.1007/s11103-006-9061-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-9061-7

Keywords

Navigation