Skip to main content
Log in

The C-terminal region of α′ subunit of soybean β-conglycinin contains two types of vacuolar sorting determinants

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

In maturing seed cells, proteins that accumulate in the protein storage vacuoles (PSVs) are synthesized on the endoplasmic reticulum (ER) and transported by vesicles to the PSVs. Vacuolar sorting determinants (VSDs) which are usually amino acid sequences of short or moderate length direct the proteins to this pathway. VSDs identified so far are classified into two types: sequence specific VSDs (ssVSDs) and C-terminal VSDs (ctVSDs). We previously demonstrated that VSDs of α′ and β subunits of β-conglycinin, one of major storage proteins of soybean (Glycine max), reside in the C-terminal ten amino acids. Here we show that both types of VSDs coexist within this region of the α′ subunit. Although ctVSDs can function only at the very C-termini of proteins, the C-terminal ten amino acids of α′ subunit directed green fluorescent protein (GFP) to the PSVs even when they were placed at the N-terminus of GFP, indicating that an ssVSD resides in the sequence. By mutation analysis, it was found that the core sequence of the ssVSD is Ser-Ile-Leu (fifth to seventh residues counted from the C-terminus) which is conserved in the α and β subunits and some vicilin-like proteins. On the other hand, the sequence composed of the C-terminal three amino acids (AFY) directed GFP to the PSVs when it was placed at the C-terminus of GFP, though the function as a VSD was disrupted at the N-terminus of GFP, indicating that the AFY sequence is a ctVSD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed SU, Bar-Peled M, Raikhel NV (1997) Cloning and subcellular location of an Arabidopsis receptor-like protein that shares common features with protein-sorting receptors of eukaryotic cells. Plant Physiol 114:325–336

    Article  PubMed  CAS  Google Scholar 

  • Ahmed SU, Rojo E, Kovaleva V, Venkataraman S, Dombrowski JE, Matsuoka K, Raikhel NV (2000) The plant vacuolar sorting receptor AtELP is involved in transport of NH2-terminal propeptide-containing vacuolar proteins in Arabidopsis thaliana. J Cell Biol 149:1335–1344

    Article  PubMed  CAS  Google Scholar 

  • Bednarek SY, Wilkins TA, Dombrowski JE, Raikhel NV (1990) A carboxyl-terminal propeptide is necessary for proper sorting of barley lectin to vacuoles of tobacco. Plant Cell 2:1145–1155

    Article  PubMed  CAS  Google Scholar 

  • Brown JC, Jolliffe NA Frigerio L, Roberts LM (2003) Sequence-specific, Golgi-dependent vacuolar targeting of castor bean 2S albumin. Plant J 36:711–719

    Article  PubMed  CAS  Google Scholar 

  • Dombrowski JE, Schroeder MR, Bendnarek SY, Raikhel NV (1993) Determination of the functional elements within the vacuolar targeting signal of barley lectin. Plant Cell 5:587–596

    Article  PubMed  CAS  Google Scholar 

  • Frigerio L, Jolliffe NA, Cola AD, Felipe DG, Paris N, Neuhaus J-M, Lord JM, Ceriotti A, Roberts LM (2001) The internal propeptide of the ricin precursor carries a sequence-specific determinant for vacuolar sorting. Plant Physiol 126:167–175

    Article  PubMed  CAS  Google Scholar 

  • Frigerio L, Virgilio M, Prada A, Faoro F, Vitale A (1998a) Sorting of phaseolin to the vacuole is saturable and requires a short C-terminal peptide. Plant Cell 10:1031–1042

    Article  CAS  Google Scholar 

  • Frigerio L, Vitale A, Lord JM, Ceriotti A, Roberts LM (1998b) Free ricin A chain, proricin and native toxin have different cellular fates when expressed in tobacco protoplasts. J Biol Chem 273:14194–14199

    Article  CAS  Google Scholar 

  • Gatto GJ, Geisbrecht BV, Gould SJ, Berg JM (2000) Peroxisomal targeting signal-1 recognition by the TPR domains of human PEX5. Nat Struct Biol 7:1091–1095

    Article  PubMed  CAS  Google Scholar 

  • Hara-Nisimura I, Shimada T, Hatano K, Takeuchi Y, Nishimura M (1998) Transport of storage proteins to protein storage vacuoles is mediated by large precursor-accumulating vesicles. Plant Cell 10:825–836

    Article  Google Scholar 

  • Herman EM, Larkins BA (1999) Protein storage bodies and vacuoles. Plant Cell 11:601–613

    Article  PubMed  CAS  Google Scholar 

  • Hillmer S, Movafeghi A, Robinson DG, Hinz G (2001) Vacuolar storage proteins are sorted in the cis-cisternae of the pea cotyledon Golgi apparatus. J Cell Biol 152:41–50

    Article  PubMed  CAS  Google Scholar 

  • Hinz G, Hillmer S, Bäumer M, Hohl I (1999) Vacuolar storage proteins and the putative vacuolar sorting receptor BP-80 exit the Golgi apparatus of developing pea cotyledons in different transport vesicles. Plant Cell 11:1509–1524

    Article  PubMed  CAS  Google Scholar 

  • Hoh B, Hinz G, Jeong B-K, Robinson DJ (1995) Protein storage vacuoles form de novo during pea cotyledon development. J Cell Sci 108:299–310

    PubMed  CAS  Google Scholar 

  • Hohl I, Robinson DG, Chrispeels MJ, Hinz G (1996) Transport of storage proteins to the vacuole is mediated by vesicles without a clathrin coat. J Cell Sci 109:2539–2550

    PubMed  CAS  Google Scholar 

  • Holwerda BC, Padgett HS, Rogers JC (1992) Proaleurain vacuolar targeting is mediated by short contiguous peptide interactions. Plant Cell 4:307–318

    Article  PubMed  CAS  Google Scholar 

  • Jauh G-Y, Phillips T, Rogers JC 1999. Tonoplast intrinsic protein isoforms as markers for vacuole functions. Plant Cell 11:1867–1882

    Article  PubMed  CAS  Google Scholar 

  • Jiang L, Phillips TE, Hamm CA, Drozdowicz YD, Rea PA, Maeshima M, Rogers SW, Rogers JC (2001) The protein storage vacuole: a unique compound organelle. J. Cell Biol 155:991–1002

    Article  PubMed  CAS  Google Scholar 

  • Kinney AJ, Jung R, Herman EM (2001) Cosuppression of the alpha subunits of beta-conglycinin in transgenic soybean seeds induces the formation of endoplasmic reticulum-derived protein bodies. Plant Cell 13:1165–1178

    Article  PubMed  CAS  Google Scholar 

  • Kirsch T, Paris N, Butler JM, Beevers L, Rogers JC (1994) Purification and initial characterization of a potential plant vacuolar targeting receptor. Proc Natl Acad Sci USA 91:3403–3407

    Article  PubMed  CAS  ADS  Google Scholar 

  • Koide Y, Hirano H, Matsuoka K, Nakamura K (1997) The N-terminal propeptide of the precursor to sporamin acts as a vacuole-targeting signal even at the C terminus of the mature part in tobacco cells. Plant Physiol 114:863–870

    Article  PubMed  CAS  Google Scholar 

  • Koide Y, Hirano H, Matsuoka K, Nakamura K (1999) The N-terminal propeptide of the precursor to sporamin acts as a vacuolar-targeting signal even at the C-terminus of the mature part in tobacco cells. Plant Physiol 114:863–870

    Article  Google Scholar 

  • Maruyama N, Adachi M, Takahashi K, Yagasaki K, Kohno M, Takenaka Y, Okuda E, Nakagawa S, Mikami B, Utsumi S (2001) Crystal structures of recombinant and native soybean β-conglycinin β homotrimers. Eur J Biochem 268:3595–3604

    Article  PubMed  CAS  Google Scholar 

  • Maruyama Y, Maruyama N, Mikami B, Utsumi S (2004) Structure of the core region of the soybean β-conglycinin α′ subunit. Acta Crystallogr D Biol Crystallogr 60:289–297

    Article  PubMed  Google Scholar 

  • Matsuoka K, Nakamura K (1991) Propeptide of a precursor to a plant vacuolar protein required for vacuolar targeting. Proc Natl Acad Sci USA 88:834–838

    Article  PubMed  CAS  ADS  Google Scholar 

  • Matsuoka K, Nakamura K (1999) Large alkyl side-chains of isoleucine and leucine in the NPIRL region constitute the core of the vacuolar sorting determinant of sporamin precursor. Plant Mol Biol 41:825–835

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka K, Neuhaus J-M (1999) Cis-elements of protein transport to the plant vacuoles. J Exp Bot 50:165–174

    Article  CAS  Google Scholar 

  • Melroy DL, Herman EM (1991) TIP, an integral membrane protein of the protein-storage vacuoles of the soybean cotyledon undergoes developmentally regulated membrane accumulation and removal. Planta 184:113–122

    Article  CAS  Google Scholar 

  • Mori T, Maruyama N, Nishizawa K, Higasa T, Yagasaki K, Ishimoto M, Utsumi S (2004) The composition of newly synthesized proteins in the endoplasmic reticulum determines the transport pathways of soybean seed storage proteins. Plant J 40:238–249

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus J-M, Rogers JC (1998) Sorting of proteins to vacuoles in plant cells. Plant Mol Biol 38:127–144

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus J-M, Sticher L, Meins FJ, Boller T (1991) A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Proc Natl Acad Sci USA 88:10362–10366

    Article  PubMed  CAS  ADS  Google Scholar 

  • Nishizawa K, Maruyama N, Satoh R, Fuchikami T, Higasa T, Utsumi S (2003) A C-terminal sequence of soybean β-conglycinin α′ subunit acts as a vacuolar sorting determinant in seed cells. Plant J 34:647–659

    Article  PubMed  CAS  Google Scholar 

  • Nishizawa K, Maruyama N, Satoh R, Higasa T, Utsumi S (2004) A vacuolar sorting determinant of soybean β-conglycinin β subunit resides in a C-terminal sequence. Plant Sci 167:937–947

    Article  CAS  Google Scholar 

  • Paris N, Rogers SW, Jiang L, Kirsch T, Beevers L, Phillips TE, Rogers JC (1997) Molecular cloning and further characterization of a probable plant vacuolar sorting receptor. Plant Physiol 115:29–39

    Article  PubMed  CAS  Google Scholar 

  • Park M, Lee D, Lee G-J, Hwang I (2005) AtRMR1 functions as a cargo receptor for protein trafficking to the protein storage vacuole. J Cell Biol 170:757–767

    Article  PubMed  CAS  Google Scholar 

  • Saalbach G, Rosso M, Schumann U (1996) The vacuolar targeting signal of the 2S albumin from Brazil nut resides at the C terminus and involves the C-terminal propeptide as an essential element. Plant Physiol 112:975–985

    Article  PubMed  CAS  Google Scholar 

  • Shimada T, Fuji K, Tamura K, Kondo M, Nishimura M, Hara-Nishimura I (2003) Vacuolar sorting receptor for seed storage proteins in Arabidopsis thaliana. Proc Natl Acad Sci USA 100:16095–16100

    Article  PubMed  CAS  ADS  Google Scholar 

  • Shimada T, Kuroyanagi M, Nishimura M, Hara-Nishimura I (1997) A pumpkin 72-kDa membrane protein of precursor-accumulating vesicles has characteristics of vacuolar sorting receptor. Plant Cell Physiol 38:1414–1420

    PubMed  CAS  Google Scholar 

  • Shimada T, Watanabe E, Tamura K, Hayashi Y, Nishimura M, Hara-Nishimura I (2002) A vacuolar sorting receptor PV72 on the membrane of vesicles that accumulate precursors of seed storage proteins (PAC vesicles). Plant Cell Physiol 43:1086–1095

    Article  PubMed  CAS  Google Scholar 

  • Vitale A, Hinz G (2005) Sorting of proteins to storage vacuoles: how many mechanisms? Trends Plant Sci 10:316–323

    Article  PubMed  CAS  Google Scholar 

  • Vitale A, Raikhel NV (1999) What do proteins need to reach different vacuoles? Trends Plant Sci 4:149–155

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Y. Niwa (University of Shizuoka) for providing the GFP (S65T) gene. This work was supported in part by grants from the Ministry of Education, Culture, Sports, Science and Technology (to N.M.), and Fuji Foundation for Protein Research (to N.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Utsumi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishizawa, K., Maruyama, N. & Utsumi, S. The C-terminal region of α′ subunit of soybean β-conglycinin contains two types of vacuolar sorting determinants. Plant Mol Biol 62, 111–125 (2006). https://doi.org/10.1007/s11103-006-9007-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-9007-0

Keywords

Navigation