Skip to main content
Log in

A SINE Family Widely Distributed in the Plant Kingdom and its Evolutionary History

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The distribution and evolution of Au SINE in plants were examined. Au SINE is a short interspersed element first identified in Aegilops umbellulata, a close relative of wheat. The Au SINE was previously found in species such as wheat, maize, tobacco, and tomato, but not in rice. In this study, we first searched public databases, and next examined the presence of Au in a broad range of plant species by PCR using internal primers of Au. Although Au is likely to be absent from many species including rice, it was identified in many Gramineae, Solanaceae, and Fabaceae species, and also in a basal angiosperm species, Asimina triloba. Phylogenetic studies suggest that Au SINE originated before the divergence of monocots and eudicots. Au SINE sequences of Asimina, Triticum, Zea, Nicotiana, Lotus, Medicago, and Glycine were aligned and compared. Although sequences of Au were highly conserved among distantly related species, every Au element in Glycine had a 16 bp deletion and its 3′ end differed from sequences of other species. This type of Au could only be found in G. max, and not in other species including other Fabaceae species such as M.␣truncatula and L. japonicus. This is the first report of a plant SINE family present in multiple lineages, and the evolution of Au SINE in the plant kingdom, especially in Gramineae and Fabaceae is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • S.F. Altschul W. Gish W. Miller E.W. Myers D.J. Lipman (1990) ArticleTitleBasic local alignment search tool J. Mol. Biol. 215 403–410 Occurrence Handle2231712 Occurrence Handle1:CAS:528:DyaK3MXitVGmsA%3D%3D Occurrence Handle10.1006/jmbi.1990.9999

    Article  PubMed  CAS  Google Scholar 

  • M.A. Batzer P.L. Deininger (2002) ArticleTitleAlu repeats and human genomic diversity Nat. Rev. Genet. 3 370–379 Occurrence Handle11988762 Occurrence Handle1:CAS:528:DC%2BD38Xjs1yhtbg%3D Occurrence Handle10.1038/nrg798

    Article  PubMed  CAS  Google Scholar 

  • S.M. Chaw C.C. Chang H.L. Chen W.H. Li (2004) ArticleTitleDating the monocot-dicot divergence and the origin of core eudicots using whole chloroplast genomes J. Mol. Evol. 58 424–441 Occurrence Handle15114421 Occurrence Handle1:CAS:528:DC%2BD2cXjslOrtr0%3D Occurrence Handle10.1007/s00239-003-2564-9

    Article  PubMed  CAS  Google Scholar 

  • Choi, H.K., Mun, J.H. and Kim, D.J. et al. (12 co-authors) 2004. Estimating genome conservation between crop and model legume species. Proc. Natl. Acad. Sci. USA 101: 15289–15294

  • M. Dewannieux C. Esnault T. Heidmann (2003) ArticleTitleLINE-mediated retrotransposition of marked Alu sequences Nat. Genet. 35 41–48 Occurrence Handle12897783 Occurrence Handle1:CAS:528:DC%2BD3sXmslemu70%3D Occurrence Handle10.1038/ng1223

    Article  PubMed  CAS  Google Scholar 

  • J.J. Doyle M.A. Luckow (2003) ArticleTitleThe rest of the iceberg. Legume diversity and evolution in a phylogenetic context Plant Physiol. 131 900–910 Occurrence Handle12644643 Occurrence Handle1:CAS:528:DC%2BD3sXisFemtbo%3D Occurrence Handle10.1104/pp.102.018150

    Article  PubMed  CAS  Google Scholar 

  • N. Escaravage S. Questiau A. Pornon B. Doche P. Taberlet (1998) ArticleTitleClonal diversity in a Rhododendron ferrugineum L. (Ericaceae) population inferred from AFLP markers Mol. Ecol. 7 975–982 Occurrence Handle1:CAS:528:DyaK1cXlslGmt7o%3D Occurrence Handle10.1046/j.1365-294x.1998.00415.x

    Article  CAS  Google Scholar 

  • N. Gilbert D. Labuda (1999) ArticleTitleCORE-SINEs: eukaryotic short interspersed retroposing elements with common sequence motifs Proc. Natl. Acad. Sci. USA 96 2869–2874 Occurrence Handle10077603 Occurrence Handle1:CAS:528:DyaK1MXhvFyks74%3D Occurrence Handle10.1073/pnas.96.6.2869

    Article  PubMed  CAS  Google Scholar 

  • N. Gilbert D. Labuda (2000) ArticleTitleEvolutionary inventions and continuity of CORE-SINEs in mammals J. Mol. Biol. 298 365–377 Occurrence Handle10772856 Occurrence Handle1:CAS:528:DC%2BD3cXisFeksL8%3D Occurrence Handle10.1006/jmbi.2000.3695

    Article  PubMed  CAS  Google Scholar 

  • M. Kajikawa N. Okada (2002) ArticleTitleLINEs mobilize SINEs in the eel through a shared 3′ sequence Cell 111 433–444 Occurrence Handle12419252 Occurrence Handle1:CAS:528:DC%2BD38XovVaku7k%3D Occurrence Handle10.1016/S0092-8674(02)01041-3

    Article  PubMed  CAS  Google Scholar 

  • H.H. Kazazian SuffixJr. (2004) ArticleTitleMobile elements: drivers of genome evolution Science 303 1626–1632 Occurrence Handle15016989 Occurrence Handle1:CAS:528:DC%2BD2cXhvFCntrk%3D Occurrence Handle10.1126/science.1089670

    Article  PubMed  CAS  Google Scholar 

  • E.A. Kellogg (1998) ArticleTitleRelationships of cereal crops and other grasses Proc. Natl. Acad. Sci. USA 95 2005–2010 Occurrence Handle9482825 Occurrence Handle1:CAS:528:DyaK1cXhslejsbg%3D Occurrence Handle10.1073/pnas.95.5.2005

    Article  PubMed  CAS  Google Scholar 

  • A. Lenoir T. Pelissier C. Bousquet-Antonelli J. M. Deragon (2005) ArticleTitleComparative evolutionary history of SINEs in Arabidopsis thaliana and Brassica oleracea: evidence for a high rate of SINE loss Cytogenet. Genome Res. 110 441–447 Occurrence Handle16093696 Occurrence Handle1:CAS:528:DC%2BD2MXnvFygsrs%3D Occurrence Handle10.1159/000084976

    Article  PubMed  CAS  Google Scholar 

  • H.S. Malik D.W. Burke T.H. Eickbush (1999) ArticleTitleThe age and evolution of non-LTR retrotransposable elements Mol. Biol. Evol. 16 793–805 Occurrence Handle10368957 Occurrence Handle1:CAS:528:DyaK1MXjslGitbs%3D

    PubMed  CAS  Google Scholar 

  • I. Ogiwara M. Miya K. Ohshima N. Okada (2002) ArticleTitleV-SINEs: a new superfamily of vertebrate SINEs that are widespread in vertebrate genomes and retain a strongly conserved segment within each repetitive unit Genome Res. 12 316–324 Occurrence Handle11827951 Occurrence Handle1:CAS:528:DC%2BD38XhtlKks7o%3D Occurrence Handle10.1101/gr.212302

    Article  PubMed  CAS  Google Scholar 

  • A.H. Paterson J.E. Bowers B.A. Chapman (2004) ArticleTitleAncient polyploidization predating divergence of the cereal, and its consequences for comparative genomics Proc. Natl. Acad. Sci. USA 101 9903–9908 Occurrence Handle15161969 Occurrence Handle1:CAS:528:DC%2BD2cXlvVahtbY%3D Occurrence Handle10.1073/pnas.0307901101

    Article  PubMed  CAS  Google Scholar 

  • A.M. Roy M.L. Caroll S.V. Nguyen A.H. Salem M. Oldridge A.O. Wilkie M.A. Batzer P.L. Deininger (2000) ArticleTitlePotential gene conversion and source genes for recently integrated Alu elements Genome Res. 10 1485–1495 Occurrence Handle11042148 Occurrence Handle1:CAS:528:DC%2BD3cXns1Siu7w%3D Occurrence Handle10.1101/gr.152300

    Article  PubMed  CAS  Google Scholar 

  • N. Saitou M. Nei (1987) ArticleTitleThe neighbor-joining method: a new method for reconstructing phylogenetic trees Mol. Biol. Evol. 4 406–425 Occurrence Handle3447015 Occurrence Handle1:STN:280:BieC1cbgtVY%3D

    PubMed  CAS  Google Scholar 

  • H. Sauquet J.A. Doyle T. Scharaschkin T. Borsch K.W. Hilu L.W. Chatrou A. Le Thomas (2003) ArticleTitlePhylogenetic analysis of Magnoliales and Myristicaceae based on multiple data sets: implications for character evolution Bot. J. Linn. Soc. 142 125–186 Occurrence Handle10.1046/j.1095-8339.2003.00171.x

    Article  Google Scholar 

  • C.W. Schmid (1998) ArticleTitleDoes SINE evolution preclude Alu function? Nucleic Acids Res. 26 4541–4550 Occurrence Handle9753719 Occurrence Handle1:CAS:528:DyaK1cXnt1Oks78%3D Occurrence Handle10.1093/nar/26.20.4541

    Article  PubMed  CAS  Google Scholar 

  • P.S. Soltis D.E. Soltis M.W. Chase (1999) ArticleTitleAngiosperm phylogeny inferred from multiple genes as a tool for comparative biology Nature 402 358–359 Occurrence Handle10.1038/46528

    Article  Google Scholar 

  • D.L. Swofford (2002) PAUP*. Phylogenetic Analysis Using Parsimony (* and other methods). Version 4 Sinauer Associates Sunderland, Massachusetts

    Google Scholar 

  • F. Tajima M. Nei (1984) ArticleTitleEstimation of evolutionary distance between nucleotide sequences Mol. Biol. Evol. 1 269–285 Occurrence Handle6599968 Occurrence Handle1:CAS:528:DyaL2MXhvF2kt7c%3D

    PubMed  CAS  Google Scholar 

  • J.D. Thompson D.G. Higgins T.J. Gibson (1994) ArticleTitleCLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice Nucleic Acids Res. 22 4673–4680 Occurrence Handle7984417 Occurrence Handle1:CAS:528:DyaK2MXitlSgu74%3D

    PubMed  CAS  Google Scholar 

  • A.M. Weiner (2002) ArticleTitleSINEs and LINEs: the art of biting the␣hand that feeds you Curr. Opin. Cell Biol. 14 343–350 Occurrence Handle12067657 Occurrence Handle1:CAS:528:DC%2BD38XktFSit74%3D Occurrence Handle10.1016/S0955-0674(02)00338-1

    Article  PubMed  CAS  Google Scholar 

  • Y. Yasui S. Nasuda Y. Matsuoka T. Kawahara (2001) ArticleTitleThe Au family, a novel short interspersed element (SINE)␣from Aegilops umbellulata Theor. Appl. Genet. 102 463–470 Occurrence Handle1:CAS:528:DC%2BD3MXjtlKgurk%3D Occurrence Handle10.1007/s001220051668

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Fawcett.

Electronic supplementary material

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fawcett, J.A., Kawahara, T., Watanabe, H. et al. A SINE Family Widely Distributed in the Plant Kingdom and its Evolutionary History. Plant Mol Biol 61, 505–514 (2006). https://doi.org/10.1007/s11103-006-0026-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-0026-7

Keywords

Navigation