Advertisement

Plant Molecular Biology

, Volume 59, Issue 2, pp 221–227 | Cite as

Caffeine Production in Tobacco Plants by Simultaneous Expression of Three Coffee N-methyltrasferases and Its Potential as a Pest Repellant

  • Hirotaka Uefuji
  • Yuko Tatsumi
  • Masayuki Morimoto
  • Pulla Kaothien-Nakayama
  • Shinjiro Ogita
  • Hiroshi SanoEmail author
Article

Abstract

Caffeine (1,3,7-trimethylxanthine) is derived from xanthosine through three successive transfers of methyl groups and a single ribose removal in coffee plants. The methyl group transfer is catalyzed by N-zmethyltransferases, xanthosine methyltransferase (XMT), 7-methylxanthine methyltransferase (MXMT) and 3,7-dimethylxanthine methyltransferase (DXMT). We previously cloned three genes encoding each of these N-methyltransferases from coffee plants, and reconstituted the final sequence of the caffeine synthetic pathway in vitro. In the present study, we simultaneously expressed these coffee genes in tobacco plants (Nicotiana tabacum), using a multiple-gene transfer method, and confirmed successful caffeine production up to 5 μg g−1 fresh weight in leaves of the resulting transgenic plants. Their effects on feeding behavior of tobacco cutworms (Spodoptera litura), which damage a wide range of crops, were then examined. Leaf disc choice test showed that caterpillars selectively fed on the wild-type control materials, or positively avoided the transgenic materials. The results suggest a novel approach to confer self-defense by producing caffeine in planta. A second generation of transgenic crops containing caffeine may save labor and agricultural costs and also mitigate the environmental load of pesticides in future.

Keywords

Caffeine insect repellant Nicotiana tabacum Spodoptera litura theobromine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aerts, R.J., Luca, V. 1992Phytochrome is involved in the light-regulation of vindoline biosynthesis in CatharanthusPlant Physiol.10010291032Google Scholar
  2. Ashihara, H., Crozier, A. 1999Biosynthesis and metabolism of caffeine and related purine alkaloids in plantsAdv. Bot. Res.30118205Google Scholar
  3. Ashihara, H., Crozier, A. 2001Caffeine: a well known but little mentioned compound in plant scienceTrends Plant Sci.6407413CrossRefPubMedGoogle Scholar
  4. Baumann, T.W., Schulthess, B.H., Hänni, K. 1995Guaraná (Paullinia cupana) rewards seed dispersers without intoxicating them by caffeinePhytochemistry3910631070CrossRefGoogle Scholar
  5. Croteau, R., Kutchan, T.M., Lews, N.G. 2000Natural products (Secondary metabolites)Buchanan, B.B.Gruissem, W.Jones, R.L. eds. Biochemistry and Molecular Biology of PlantsAmerican Society of Plant PhysiologistsRockville12501318Google Scholar
  6. Hiei, Y., Ohta, S., Komari, T., Kumashiro, T. 1994Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNAPlant J.6271282CrossRefPubMedGoogle Scholar
  7. Hollingsworth, R.G., Armstrong, J.W., Campbell, E. 2002Caffeine as a repellent for slugs and snails: at high concentrations this stimulant becomes a lethal neurotoxin to garden pestsNature417915916CrossRefPubMedGoogle Scholar
  8. Kato, M., Mizuno, K., Crozier, A., Fujimura, T., Ashihara, H. 2000Caffeine synthase gene from tea leavesNature406956957CrossRefPubMedGoogle Scholar
  9. Mathavan, S., Premalatha, Y., Christopher, M.S.M. 1985Effects of caffeine and theophylline on the fecundity of four lepidopteran speciesExp. Biol.44133138PubMedGoogle Scholar
  10. Mizuno, K., Okuda, A., Kato, M., Yoneyama, N., Tanaka, H., Ashihara, H., Fujimura, T. 2003Isolation of a new dual-functional caffeine synthase gene encoding an enzyme for the conversion of 7-methylxanthine to caffeine from coffee (Coffea arabica L.)FEBS Lett.5347581CrossRefPubMedGoogle Scholar
  11. Mosli Waldhauser, S.S., Baumann, T.W. 1996Compartmentation of caffeine and related purine alkaloids depends exclusively on the physical chemistry of their vacuolar complex formation with chlorogenic acidsPhytochemistry42985996CrossRefGoogle Scholar
  12. Nathanson, J.A. 1984Caffeine and related methylxanthines: possible naturally occurring pesticidesScience226184187PubMedGoogle Scholar
  13. Ogawa, M., Herai, Y., Koizumi, N., Kusano, T., Sano, H. 20017-Methylxanthine methyltransferase of coffee plants: gene isolation and enzymatic propertiesJ. Biol. Chem.27682138218CrossRefPubMedGoogle Scholar
  14. Schmeller, T., Wink, M. 1998Utilization of alkaloids in modern medicineRoberts, M.F.Wink, M. eds. Alkaloids: Biochemistry, Ecology, and Medicinal ApplicationsPrenum PressNew York435459Google Scholar
  15. Seeger, C., Poulsen, C., Dandanell, G. 1995Identification and characterization of genes (xapA, xapB, and xapR) involved in xanthosine catabolism in Escherichia coliJ. Bacteriol.17755065516PubMedGoogle Scholar
  16. Stasolla, C., Katahira, R., Thorpe, T.A., Ashihara, H. 2003Purine and pyrimidine nucleotide metabolism in higher plantsJ. Plant Physiol.16012711295CrossRefPubMedGoogle Scholar
  17. Uefuji, H., Ogita, S., Yamaguchi, Y., Koizumi, N., Sano, H. 2003Molecular cloning and functional characterization of three distinct N-methyltransferases involved in the caffeine biosynthetic pathway in coffee plantsPlant Physiol.132372380CrossRefPubMedGoogle Scholar
  18. US Code of Federal Regulations 2001. Title 21-Food and Drugs (21CFR182), US Government, p. 455Google Scholar
  19. Usher, B.F., Bernays, E.A., Barbehenn, R.V. 1988Antifeedant tests with larvae of Pseudaletia unipuncta: viability of behavioral responseEntomol. Exp. Appl.48203212CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Hirotaka Uefuji
    • 1
    • 3
  • Yuko Tatsumi
    • 1
  • Masayuki Morimoto
    • 1
  • Pulla Kaothien-Nakayama
    • 1
  • Shinjiro Ogita
    • 1
    • 2
  • Hiroshi Sano
    • 1
    Email author
  1. 1.Research and Education Center for Genetic InformationNara Institute of Science and TechnologyNaraJapan
  2. 2.Biotechnology Research CenterToyama Prefectural UniversityToyamaJapan
  3. 3.Biotechnology Institute University of MinnesotaSt. PaulUSA

Personalised recommendations