Skip to main content
Log in

Different subcellular localization and trafficking properties of KNOX class 1 homeodomain proteins from rice

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Genes of the KN1-like homeobox (KNOX) class 1 encode transcription factors involved in shoot apical meristem development and maintenance. We studied the subcellular localization of Green Fluorescent Protein-tagged rice KNOX proteins (Oskn1-3) after particle bombardment of onion and rice cells and after transformation of Arabidopsis and rice with constitutive and inducible expression constructs. In all test systems, the three rice KNOX proteins showed nuclear and cytoplasmic localization patterns. However, Oskn1 additionally showed in some cells a distribution over punctae moving randomly in the cytosol. Use of an inducible expression system indicated a nuclear presence of Oskn1 in cells of the shoot apical meristem and post-transcriptional down-regulation in early leaf primordia. Arabidopsis and rice test systems were used to study effects of plant hormones and auxin transport inhibition on KNOX protein localization. Application of GA3 or 1-NAA shifted protein localization completely to the cytoplasm and resulted in loss of the punctae formed by Oskn1. Conversely, NPA application induced a complete nuclear localization of the KNOX proteins. To study intercellular movement of the KNOX proteins we set up a novel co-bombardment assay in which trafficking of untagged KNOX proteins was visualized through the co-trafficking of green fluorescent or blue fluorescent marker proteins. In multiple independent experiments Oskn1 trafficked more extensively to neighboring cells than Oskn2 and Oskn3. Differences in the localization and trafficking properties of Oskn1, Oskn2 and Oskn3 correlate with differences in mRNA localization patterns and functional differences between the rice KNOX genes and their putative orthologues from other species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

1-NAA:

naphtalene-1-acetic acid

2,4-D:

2,4-dichlorophenoxy acidic acid

BAP:

benzylaminopurine

BFP:

blue fluorescent protein

DAPI:

4,6-diamidino-2-phenylindole

ER:

endoplasmic reticulum

GA:

gibberellic acid

GFP:

green fluorescent protein

IAA:

indole-3-acetic acid

KN1:

KNOTTED1

KNAT:

Arabidopsis thaliana

KNOX:

Knotted-1 like homeobox

NLS:

nuclear localization signal

NPA:

1-N-naphthylphthalamic acid

OSH:

Oryza sativa homeobox

OSKN:

Oryza sativa KNOX

SAM:

shoot apical meristem

SEL:

size exclusion limit

NCAPP1:

non-cell-autonomous pathway protein1

SHR:

SHORT-ROOT

STM:

SHOOTMERISTEMLESS

WUS:

WUSCHEL

References

  • Baurle, I. and Laux, T. 2003. Apical meristems: the plant’s fountain of youth. Bioessays 25: 961–970.

    Google Scholar 

  • Brand, U., Grunewald, M., Hobe, M. and Simon, R. 2002. Regulation of CLV3 expression by two homeobox genes in Arabidopsis. Plant Physiol. 129: 565–575.

    Google Scholar 

  • Chiu, W.L., Niwa, Y., Zeng, W., Hirano, T., Kobayashi, H. and Sheen J. 1996. Engineered GFP as a vital reporter in plants. Curr. Biol. 6: 325–330.

    Google Scholar 

  • Clark, S.E. 2001a. Cell signalling at the shoot meristem. Nat. Rev. Mol. Cell Biol. 2: 276–284.

    Google Scholar 

  • Clark, S.E. 2001b. Meristems: start your signaling. Curr. Opin. Plant Biol. 4: 28–32.

    Google Scholar 

  • Clough, S.J. and Bent, A.F. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735–743.

    Google Scholar 

  • Crawford, K.M. and Zambryski, P.C. 2000. Subcellular localization determines the availability of non-targeted proteins to plasmodesmatal transport. Curr. Biol. 10: 1032–1040.

    Google Scholar 

  • Crawford, K.M. and Zambryski, P.C. 2001. Non-targeted and targeted protein movement through plasmodesmata in leaves in different developmental and physiological states. Plant Physiol. 125: 1802–1812.

    Google Scholar 

  • Endrizzi, K., Moussian, B., Haecker, A., Levin, J.Z. and Laux, T. 1996. The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J. 10: 967–979.

    Google Scholar 

  • Fernandez, A.G., Long, J.A., Joy, R.E. and Barton, M.K. 2001. Rescue of the shootmeristemless (stm) mutant pheno-type by expression of STM mRNA in a subset of its normal domain: implications for nonautonomous action of the STM transcription factor in Arabidopsis thaliana. Dev. Biol. 235: 260.

    Google Scholar 

  • Geldner, N., Friml, J., Stierhof, Y.D., Jurgens, G. and Palme, K. 2001. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413: 425–428.

    Article  CAS  PubMed  Google Scholar 

  • Gisel, A., Barella, S., Hempel, F.D. and Zambryski, P.C. 1999. Temporal and spatial regulation of symplastic trafficking during development in Arabidopsis thaliana apices. Development 126: 1879–1889.

    Google Scholar 

  • Hake, S. 2001. Transcription factors on the move. Trends Genet. 17: 2–3.

    Google Scholar 

  • Hake, S., Char, B.R., Chuck, G., Foster, T., Long, J. and Jackson, D. 1995. Homeobox genes in the functioning of plant meristems. Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci. 350: 45–51.

    Google Scholar 

  • Hamant, O., Nogue, F., Belles-Boix, E., Jublot, D., Grandjean, O., Traas, J. and Pautot, V. 2002. The KNAT2 homeodomain protein interacts with ethylene and cytokinin signaling. Plant Physiol. 130: 657–665.

    Google Scholar 

  • Haseloff, J., Siemering, K.R., Prasher, D.C. and Hodge, S. 1997. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Natl. Acad. Sci. 94: 2122–2127.

    Google Scholar 

  • Hawes, C., Saint-Jore, C., Martin, B. and Zheng, H.Q. 2001. ER confirmed as the location of mystery organelles in Arabidopsis plants expressing GFP! Trends Plant Sci. 6: 245–246.

    Google Scholar 

  • Hay, A., Kaur, H., Phillips, A., Hedden, P., Hake, S. and Tsiantis, M. 2002. The gibberellin pathway mediates KNOTTED1-type homeobox function in plants with different body plans. Curr. Biol. 12: 1557–1565.

    Google Scholar 

  • Hay, A., Craft, J. and Tsiantis, M. 2004. Plant hormones and homeoboxes: bridging the gap? Bioessays 26: 395–404.

    Google Scholar 

  • Itaya, A., Woo, Y.M., Masuta, C., Bao, Y.M., Nelson, R.S. and Ding, B. 1998. Developmental regulation of intercellular protein trafficking through plasmodesmata in tobacco leaf epidermis. Plant Physiol. 118: 373–385.

    Google Scholar 

  • Jackson, D. 2002. Double labeling of KNOTTED1 mRNA and protein reveals multiple potential sites of protein trafficking in the shoot apex. Plant Physiol. 129: 1423–1429.

    Google Scholar 

  • Jackson, D. and Kim, J.Y. 2003. Intercellular signaling: an elusive player steps forth. Curr. Biol. 13: R349-R350.

    Google Scholar 

  • Jackson, D., Veit, B. and Hake, S. 1994. Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120: 405–413.

    Google Scholar 

  • Kerstetter, R.A., Laudencia-Chingcuanco, D., Smith, L.G. and Hake, S. 1997. Loss-of-function mutations in the maize homeobox gene, knotted1, are defective in shoot meristem maintenance. Development 124: 3045–3054.

    Google Scholar 

  • Kim, I., Hempel, F.D., Sha, K., Pfluger, J. and Zambryski, P.C. 2002a. Identification of a developmental transition in plasmodesmatal function during embryogenesis in Arabidopsis thaliana. Development 129: 1261–1272.

    Google Scholar 

  • Kim, J.Y., Yuan, Z.A., Cilia, M., Khalfan-Jagani, Z. and Jackson, D. 2002b. Intercellular trafficking of a KNOTTED1 green fluorescent protein fusion in the leaf and shoot meristem of Arabidopsis. Proc. Natl. Acad. Sci. 99: 4103–4108.

    Google Scholar 

  • Kim, J.Y., Yuan, Z. and Jackson, D. 2003. Developmental regulation and significance of KNOX protein trafficking in Arabidopsis. Development 130: 4351–4362.

    Google Scholar 

  • Kragler, F., Monzer, J., Shash, K., Xoconostle-Cazares, B. and Lucas, W.J. 1998. Cell-to-cell transport of proteins: requirement for unfolding and characterization of binding to a putative plasmodesmal receptor. Plant J. 15: 367–381.

    Google Scholar 

  • Kragler, F., Monzer, J., Xoconostle-Cazares, B. and Lucas, W.J. 2000. Peptide antagonists of the plasmodesmal macro-molecular trafficking pathway. EMBO J. 19: 2856–2868.

    Google Scholar 

  • Kusaba, S., Fukumoto, M., Honda, C., Yamaguchi, I., Sakamoto, T. and Kano-Murakami, Y. 1998. Decreased GA(1) content caused by the overexpression of OSH1 is accompanied by suppression of GA 20-oxidase gene expression. Plant Physiol. 117: 1179–1184.

    Google Scholar 

  • Lee, J.Y., Yoo, B.C., Rojas, M.R., Gomez-Ospina, N., Staehelin, L.A. and Lucas, W.J. 2003. Selective trafficking of non-cell-autonomous proteins mediated by NtNCAPP1. Science 299: 392–396.

    Google Scholar 

  • Lincoln, C., Long, J., Yamaguchi, J., Serikawa, K. and Hake, S. 1994. A KNOTTED1-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell 6: 1859–1876.

    Google Scholar 

  • Long, J.A., Moan, E.I., Medford, J.I. and Barton, M.K. 1996. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379: 66–69.

    Google Scholar 

  • Lucas, W.J. 1999. Plasmodesmata and the cell-to-cell transport of proteins and nucleoprotein complexes. J. Exp. Bot. 50: 979–987.

    Google Scholar 

  • Lucas, W.J., Bouchepillon, S., Jackson, D.P., Nguyen, L., Baker, L., Ding, B. and Hake, S. 1995. Selective trafficking of KNOTTED1 homeodomain protein and its messenger-RNA through plasmodesmata. Science 270: 1980–1983.

    Google Scholar 

  • Maizel, A., Bensaude, O., Prochiantz, A. and Joliot, A. 1999. A short region of its homeodomain is necessary for engrailed nuclear export and secretion. Development 126: 3183–3190.

    CAS  PubMed  Google Scholar 

  • Matsuoka, M., Ichikawa, H., Saito, A., Tada, Y., Fujimura, T. and Kano-Murakami, Y. 1993. Expression of a rice homeobox gene causes altered morphology of transgenic plants. Plant Cell 5: 1039–1048.

    Google Scholar 

  • Meijer, A.H., Scarpella, E., van Dijk, E.L., Qin, L., Taal, A.J.C., Rueb, S., Harrington, S.E., McCouch, S.R., Schilperoort, R.A. and Hoge, J.H.C. 1997. Transcriptional repression by Oshox1, a novel homeodomain leucine zipper protein from rice. Plant J. 11: 263–276.

    Google Scholar 

  • Mele, G., Ori, N., Sato, Y. and Hake, S. 2003. The knotted1-like homeobox gene BREVIPEDICELLUS regulates cell differentiation by modulating metabolic pathways. Genes Dev. 17: 2088–2093.

    Google Scholar 

  • Nakajima, K., Sena, G, Nawy, T. and Benfey, P.N. 2001. Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413: 307–311.

    Google Scholar 

  • Ormenese, S., Havelange, A., Deltour, R. and Bernier, G. 2000. The frequency of plasmodesmata increases early in the whole shoot apical meristem of Sinapis alba L. during floral transition. Planta 211: 370–375.

    Google Scholar 

  • Ouwerkerk, P.B.F., de Kam, R.J., Hoge, J.H.C. and Meijer, A.H. 2001. Glucocorticoid-inducible gene expression in rice. Planta 213: 370–378.

    Article  Google Scholar 

  • Perbal, M.C., Haughn, G., Saedler, H. and Schwarz-Sommer, Z. 1996. Non-cell-autonomous function of the Antirrhinum floral homeotic proteins DEFICIENS and GLOBOSA is exerted by their polar cell-to-cell trafficking. Development 122: 3433–3441.

    Google Scholar 

  • Pickard, B.G. and Beachy, R.N. 1999. Intercellular connections are developmentally controlled to help move molecules through the plant. Cell 98: 5–8.

    Google Scholar 

  • Postma-Haarsma, A.D., Verwoert, I.I.G.S., Stronk, O.P., Koster, J., Lamers, G.E.M., Hoge, J.H.C. and Meijer, A.H. 1999. Characterization of the KNOX class homeobox genes Oskn2 and Oskn3 identified in a collection of cDNA libraries covering the early stages of rice embryogenesis. Plant Mol. Biol. 39: 257–271.

    Google Scholar 

  • Postma-Haarsma, A.D., Rueb, S., Scarpella, E., den Besten, W., Hoge, J.H.C. and Meijer, A.H. 2002. Developmental regulation and downstream effects of the knox class homeobox genes Oskn2 and Oskn3 from rice. Plant Mol. Biol. 48: 423–441.

    Google Scholar 

  • Quaedvlieg, N.E.M., Schlaman, H.R.M., Admiraal, P.C., Wijting, S.E., Stougaard, J. and Spaink, H.P. 1998. Fusions between green fluorescent protein and beta-glucuronidase as sensitive and vital bifunctional reporters in plants. Plant Mol. Biol. 38: 861–873.

    Google Scholar 

  • Reinhardt, D., Mandel, T. and Kuhlemeier, C. 2000. Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12: 507–518.

    Google Scholar 

  • Reinhardt, D., Pesce, E.-R., Stieger, P., Mandel, T., Baltensperger, K., Bennett, M., Traas, J., Friml, J. and Kuhlemeier, C. 2003. Regulation of phyllotaxis by polar auxin transport. Nature 426: 255–260.

    Article  CAS  PubMed  Google Scholar 

  • Reiser, L., Sanchez-Baracaldo, P. and Hake, S. 2000. Knots in the family tree: evolutionary relationships and functions of knox homeobox genes. Plant Mol. Biol. 42: 151–166.

    Google Scholar 

  • Sakamoto, T., Kamiya, N., Ueguchi-Tanaka, M., Iwahori, S. and Matsuoka, M. 2001. KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev. 15: 581–590.

    Google Scholar 

  • Sato, Y., Sentoku, N., Miura, Y., Hirochika, H., Kitano, H. and Matsuoka, M. 1999. Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants. EMBO J. 18: 992–1002.

    Google Scholar 

  • Scanlon, M.J. 2003. The polar auxin transport inhibitor N-1-naphthylphthalamic acid disrupts leaf initiation, KNOX protein regulation, and formation of leaf margins in maize. Plant Physiol. 133: 597–605.

    Google Scholar 

  • Schoof, H., Lenhard, M., Haecker, A., Mayer, K.F.X., Jurgens, G. and Laux, T. 2000. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100: 635–644.

    Google Scholar 

  • Sentoku, N., Sato, Y., Kurata, N., Ito, Y., Kitano, H. and Matsuoka, M. 1999. Regional expression of the rice KN1-type homeobox gene family during embryo, shoot, and flower development. Plant Cell 11: 1651–1664.

    Article  Google Scholar 

  • Serikawa, K.A., Martinez-Laborda, A. and Zambryski, P. 1996. Three knotted1-like homeobox genes in Arabidopsis. Plant Mol. Biol. 32: 673–683.

    Google Scholar 

  • Sessions, A., Yanofsky, M.F., Weigel, D. 2000. Cell-cell signaling and movement by the floral transcription factors LEAFY and APETALA1. Science 289: 779–781.

    Google Scholar 

  • Siemering, K.R., Golbik, R., Sever, R. and Haseloff, J. 1996. Mutations that suppress the thermosensitivity of green fluorescent protein. Curr. Biol. 6: 1653–1663.

    Google Scholar 

  • Vandromme, M., Gauthier-Rouviere, C., Lamb, N. and Fernandez, A. 1996. Regulation of transcription factor localization: fine-tuning of gene expression. Trends Biochem. Sci. 21: 59–64.

    Google Scholar 

  • Wu, X., Dinneny, J.R., Crawford, K.M., Rhee, Y., Citovsky, V., Zambryski, P.C. and Weigel, D. 2003. Modes of intercellular transcription factor movement in the Arabidopsis apex. Development 130: 3735–3745.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annemarie H. Meijer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuijt, S.J.H., Lamers, G.E.M., Rueb, S. et al. Different subcellular localization and trafficking properties of KNOX class 1 homeodomain proteins from rice. Plant Mol Biol 55, 781–796 (2004). https://doi.org/10.1007/s11103-005-1967-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-005-1967-y

Key words

Navigation