Skip to main content
Log in

A strawberry fruit-specific and ripening-related gene codes for a HyPRP protein involved in polyphenol anchoring

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A strawberry (Fragaria x ananassa cv. Chandler) fruit cDNA (Fahyprp-cDNA) and its corresponding gene (Fahyprp) showing sequence homology to higher plant hyprp genes have been isolated. The cDNA contains an open reading frame encoding a 16 kDa protein with 156 amino acids. The peptide has an aminoterminal signal sequence, a repetitive proline-rich sequence, and a cysteine-rich carboxy-terminal region homologous to other HyPRP proteins. Northern blot and QRT-PCR analysis have shown that the strawberry transcript is speci.cally expressed in fruit, not being detected in other plant tissues. “In situ” hybridization and immunolocalization studies have indicated that the Fahyprp gene is strongly expressed in achene sclerenchyma cells, in the vascular and receptacle cells of immature green fruit and in the vascular cells of mature red fruits. The achenes removal from unripe green fruits induced the expression of this Fahyprp gene. This induction was reverted by treatment of deachened fruit with the auxin NAA, supporting the idea that Fahyprp gene expression is regulated by auxins. Furthermore, the HyPRP protein has been localized in parenchymatic cells of immature fruits associated to structures containing condensed tannins. The results are discussed supporting a putative role of this protein in the anchoring of polymeric polyphenols in the strawberry fruit during growth and ripening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAD:

cinnamyl alcohol deshydrogenase

Ct:

threshold cycle

DMACA:

p-dimethylaminocinnamaldehyde

FaHyprp:

strawberry hybrid proline-rich protein

GRPs:

glycine rich proteins

HyPRPs:

hybrid proline-rich proteins

KLM:

keyhole limpet hemocyanine

NAA:

1-naphthaleneacetic acid

pfu:

plaque formation units

pI:

isoelectric point

PRPs:

proline-rich proteins

QRT-PCR:

quantitative real time PCR

RER:

rough endoplasme reticulum

RT-PCR:

retrotranscriptase polymerase chain reaction

References

  • Abrahams, S., Tanner, G.J., Larkin, P.J. and Ashton, R. 2002. Identification and biochemical characterization of mutants in the proanthocyanidin pathway in Arabidopsis. Plant Physiol 130: 561–576.

    Google Scholar 

  • Aharoni, A. and O’Connell, A.P. 2002. Gene expression analysis of strawberry achene and receptacle maturation using DNA microarrays. J. Exp. Bot. 53: 2073–2087.

    Google Scholar 

  • Aharoni, A., Keizer, L.C.P., Van Den Broeck, H.C., Blanco-Portales, R., Muñoz-Blanco, J., Bois, G., Smit, P., De Vos, R.C.H. and O’Conell, A.P. 2002. Novel insight into vascular, stress, and auxin-dependent an -independent gene expression programs in strawberry, a non-climateric fruit. Plant Physiol. 129: 1019–1031.

    Google Scholar 

  • Baker, S.S., Wilhelm, K.S. and Thomashow, M.F. 1994. The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer col-, drought- and ABA-regulated gene expression. Plant Mol Biol 24: 701–713.

    CAS  PubMed  Google Scholar 

  • Baxter, N.J., Lille, T.H., Haslam, E. and Williamson, M.P. 1997. Multiple interactions between polyphenols and a salivary proline-rich protein repeat result in complexation and precipitation. Biochem. 36: 5566–5577.

    Google Scholar 

  • Bell, A.A., El-Zik, K.M. and Thaxton, P.M. 1992. Chemistry, biological significance and genetic control of proanthocyanidins in cotton (Gossypium spp). In: R.M. Hemingway and P.E. Lacks (Eds.) Plant Polyphenols: Plenum Press, New York, USA, pp. 571–595.

    Google Scholar 

  • Benítez-Burraco, A., Blanco-Portales, R., Redondo-Nevado, J., Bellido, M.L., Moyano, E., Caballero, J.L. and Muñoz-Blanco, J. 2003. Cloning and characterization of two ripening-related strawberry (Fragaria x ananassa cv. Chandler) pectate lyase genes. J. Exp. Bot. 54: 633–645.

    Google Scholar 

  • Blanco-Portales, R., Medina-Escobar, N., López-Ráez, J.A., González-Reyes, J.A., Villalba, J.M., Moyano, E., Caballero, J.L. and Muñoz-Blanco, J. 2002. Cloning, expression and immunolocalization pattern of a cinnamyl alcohol dehydrogenase gene from strawberry (Fragaria x ananassa cv. Chandler). J. Exp. Bot. 53: 1723 -1734.

    Google Scholar 

  • Boss, P.K., Davies, C. and Robinson, S.P. 1996. Anthocyanin composition and anthocyanin pathway gene expression in grapevine sports differing in berry skin colour. Aust J. Grap Wine Res. 2: 163–170.

    Google Scholar 

  • Busk, P.K. and Pages, M. 1998. Regulation of abscisic acid-induced transcription. Plant Mol. Biol. 37: 425–435.

    Google Scholar 

  • Casab, G.J. 1998. Plant cell wall proteins. Ann. Rev. Physiol. Plant Mol. Biol. 49: 281–309.

    Google Scholar 

  • Castonguay, Y., Laberge, S., Nadeau, P. and Vézina, L.P. 1994. A cold-induced gene from Medicago sativa encodes a bimodular protein similar to developmentally regulated proteins. Plant Mol. Biol. 24: 799–804.

    Google Scholar 

  • Choi, D.W., Song, J.Y., Kwon, Y.M. and Kim, S.G. 1996. Characterization of a cDNA encoding a proline-rich 14 KDa protein in developing cortical cells of the roots of bean (Phaseolus vulgaris) seedlings. Plant Mol. Biol. 30: 973–982.

    Google Scholar 

  • Clifford, M.N. 1974. Specificity of acidic phloroglucinol reagents. J. Chromatograph. 94: 321–324.

    Google Scholar 

  • Coupe, S.A., Taylor, J.E., Isaac, P.G. and Roberts, J.A. 1993. Identification and characterization of a proline-rich mRNA that accumulates during pod development in oilseed rape (Brassica napus L.). Plant Mol. Biol. 23: 1223–1232.

    Google Scholar 

  • Costanbel, C.P. 1999. A survey of hervibore-inducible defensive proteins and phytochemicals. In: A.A. Agrawaal, S. Tuzun and E. Bent (Eds.) Induced Plant Defenses Against Herbivores and Pathogens, APS Press, St Paul, USA, pp. 137–166.

    Google Scholar 

  • Costanbel, C.P. 2002. Molecular analysis of herbivore-induced condensed tannin synthesis: cloning and expression of dihydroflavonol reductase from trembling aspen (Populus tremuloides). Plant J. 32: 701–712.

    Google Scholar 

  • Datta, N., LaFayette, P.R., Koner, P.A., Nagao, R.T. and Key, J.L. 1993. Isolation and characterization of three families of auxin down-regulated cDNA clones. Plant Mol. Biol. 21: 859–869.

    CAS  PubMed  Google Scholar 

  • Debeaujon, I., Peeters, A.J.M., Leon-Kloosterziel, K.M. and Koorneef, M. 2001. The TRANSPARENTA TESTA 12 gene on Arabidopsis encodes a multidrug secondary transporterlike protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 13: 853–871.

    Article  CAS  PubMed  Google Scholar 

  • Deutch, C.E. and Winicov, I. 1995. Post-transcriptional regulation of a salt-inducible alfalfa gene encoding a putative chimeric proline-rich cell wall protein. Plant Mol. Biol. 27: 411–418.

    Google Scholar 

  • Devereux, J., Haeberli, P. and Smithies, O. 1984. A comprensive set of sequence analysis programs for the VAX. Nucl. Acids Res. 12: 387–395.

    Google Scholar 

  • Devic, M., Guilleminot, J., Debeaujon, I., Bechtold, N., Bensaude, E., Koornneef, M., Pelletier, G. and Delseny, M. 1999. The BANYULS gene encodes a DFR-like protein and is a marker of early seed coat development. Plant J. 19: 387–398.

    Google Scholar 

  • Fujita, T., Kouchi, H., Ichikawa, T. and Syono, K. 1994. Cloning of cDNAs for genes that are specifically or preferentially expressed during the development of tobacco genetic tumors. Plant J. 5: 645–654.

    Google Scholar 

  • Gallie, D.R. 1993. Post-transcriptional regulation of gene expression in plants. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 44: 77–105.

    Google Scholar 

  • Grundhöfer, P., Niemetz, R., Schilling, G. and Gross, G.G. 2001. Biosynthesis and subcellular distribution of hidrolyzable tannins. Phytochemical 57: 915–927.

    Google Scholar 

  • Gutmann, M. and Feucht, W. 1991. A new method for selective localization of flavan-3-ols in plant tissues involving glycolmethacrylate embedding and microwave irradiation. Histochemistry 96: 83–86.

    Google Scholar 

  • Halloin, J.M. 1982. Localization and changes in catechin and tannins during development and ripening of cottonseed. New Phytol. 90: 651–657.

    Google Scholar 

  • Hattori, T., Terada, T. and Hamasuna, S. 1995. Regulation of the Osem gene by abscisic acid and the transcriptional activator VP1: analysis of cis-acting promoter elements required for regulation by abscisic acid and VP1. Plant J. 7: 913–925.

    Google Scholar 

  • Hotze, M., Waitz, A. and Schröder, J. 1994. cDNA for a 14-Kilodalton Polypeptide from Madagascar Periwinkle (Catharanthus roseus). Plant Physiol. 104: 1097–1098.

    Google Scholar 

  • Jaakola, L., Maatta, K., Pirttila, A.M., Torronen, R., Karenlampi, S. and Hohtola, A. 2002. Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Plant Physiol. 130: 729–739.

    Google Scholar 

  • Jackson, D.P. 1991. In situ hybridization in plants. In: S.J. Gurr, M.J. Mc Pherson and D.J. Bowles (Eds.) Molecular Plant Pathology I: A practical approach, IRL Press, Oxford University Press, Oxford, pp. 163–174.

    Google Scholar 

  • Jersch, S., Scherer, C., Huth, G. and Schlösser, E. 1989. Proanthocyanidins as basis for quiescence of Botrytis cinerea in inmature strawberry fruits. J. Plant Dis. Proct. 96: 365–378.

    Google Scholar 

  • John, I., Wang, H., Held, B.M., Wurtele, E. and Colbert, J.T. 1992. An mRNA that specifically accumulates in maize roots delineates a novel subset of developing cortical cells. Plant Mol. Biol. 20: 821–831.

    Google Scholar 

  • Josè-Estanyol, M., Ruiz-Avila, L. and Puigdomènech, P. 1992. A maize embryo-specific gene encodes a proline-rich and hydrophobic protein. Plant Cell 4: 413–423.

    Google Scholar 

  • Josè, M. and Puigdomènech, P. 1994. Hybrid-Proline rich and related proteins. Current Topic in Mol. Genet. (Life Sci. Adv.) 2: 109–126.

    Google Scholar 

  • Kader, F., Rovel, B., Girardin, M. and Metche, M. 1996. Fractionation and identification of the phenolic compounds of highbush blueberries (Vaccinium corymbosum L.). Food Chem 55: 35–40.

    Google Scholar 

  • Kantar, F., Pilbeam, C.J. and Hebblethwaite, P.D. 1996. Effect of tannin content of faba bean (Vicia faba) seed on seed vigour, germination and field emergence. Ann. Appl. Biol. 128: 85–93.

    Google Scholar 

  • Klein, M., Martinoia, E., Hoffmann-Thoma, G. and Weissenböck, G. 2000. A membrane-potential dependent ABClike transporter mediates the vacuolar uptake ot rye flavone glucuronides: regulation of glucuronide uptake by glutathione and its conjugate. Plant J. 21: 289–304.

    Google Scholar 

  • Lamhamedi, M.S., Chamberland, H. and Bernier, P.Y. 2000. Clonal variation in morphology, growth, physiology, anatomy and ultrastructure of container-grown white spruce somatic plants. Tree Physiol. 20: 869–880.

    Google Scholar 

  • Lee, D., Meyer, K., Chapple, C. and Douglas, C.J. 1997. Down-regulation of 4-coumarate: CoA ligase (4CL) in Arabidopsis: effect on lignin composition and implications for the control of monolignol biosynthesis. Plant Cell 9: 1985–1998.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y.G., Tanner, G.J. and Larkin, P.J. 1996. The DMACAHCl protocol and the threshold proanthocyanidin content for bloat safety in forage legumes. J. Sci. Food Agric. 70: 89–101.

    Google Scholar 

  • Manning, K. 1991. Isolation of nucleic acids from plants by differential solvent precipitation. Anal Biochem 195: 45–50.

    Google Scholar 

  • Meakin, P.J. and Roberts, J.A. 1990. Dehiscence of fruit in oilseed rape (Brassica napus L.). I. Anatomy of pod dehiscence. J. Exp. Bot. 41: 995–1002.

    Google Scholar 

  • Medina-Escobar, N., Cárdenas, J., Valpuesta, V., Muñoz-Blanco, J. and Caballero, J.L. 1997. Cloning and characterization of cDNAs from genes differentially expressed during the strawberry fruit ripening process by a MAST-PCRSBDS method. Anal. Biochem. 248: 288–296.

    Google Scholar 

  • Mercier, J. 1997. Role of phytoalexins and other antimicrobial compounds from fruits and vegetables in postharvest disease resistance. In: F. Tomas-Barberan (Eds.) Phytochemistry of Fruits and Vegetables, Oxford University Press, New York, pp. 221–241.

    Google Scholar 

  • Millholland, R.D. 1982. Histopathology of strawberry infected with Colletotrichum fragariae. Phytopathology 72: 1434–1439.

    Google Scholar 

  • Morazzoni, P. and Bombardellli, E. 1996. Vaccinium myrtillus L. Fitoterapia 67: 3–29.

    Google Scholar 

  • Moyano, E., Portero-Robles, I., Medina-Escobar, N., Valpuesta, V., Muñoz-Blanco, J. and Caballero, J.L. 1998. A fruit specific putative dihydroflavonol 4-reductase gene is differentially expressed in strawberry during the ripening process. Plant Physiol. 117: 711–716.

    Google Scholar 

  • Müsel, G., Schindler, T., Bergfeld, R., Ruel, K., Jacquet, G., Lapierre, C., Speth, V. and Schopfer, P. 1997. Structure and distribution of lignin in primary and secondary cell walls of maize coleoptiles analyzed by chemical immunological probes. Planta 201: 146–159.

    Google Scholar 

  • Nunam, K.J., Sims, I.M., Bcic, A., Robinson, S.P. and Fincher, G.B. 1998. Changes in cell wall composition during grape berries. Plant Physiol. 118: 783–792.

    Google Scholar 

  • Perkins-Veazie, P. 1995. Growth and ripening of strawberry fruit. Horticultural Reviews 17: 267–297.

    Google Scholar 

  • Porankiewicz, A., Splund, J., Nilsson, B., Höglund, A.S. and Josefsson, L.G. 2000. Removal of cross reactive anti-carrier (keyhole limpet haemocyanin, KLH) antibodies from Rabbit serum using immobilized KLH. Life Sci. News 5: 16–17.

    Google Scholar 

  • Ryser, U., Schorderet, M., Zhao, G.F., Studer, D., Ruel, K., Hauf, G. and Keller, B. 1997. Structural cell-wall proteins in protoxylem development: evidence for repair process mediated by a glycine-rich protein. Plant J. 12: 97–111.

    Google Scholar 

  • Salts, Y., Kenigsburg, D., Wachs, R., Guissem, W. and Barg, R. 1992. DNA sequence of the tomato fruit expressed proline-rich protein gene TPRP-F1 reveals an intron within de 3′ untranslated transcript. Plant Mol. Biol. 18: 407–409.

    Google Scholar 

  • Schneider, H. 1981. Plant Anatomy and General Botany. In: A.G. Clark (Eds.) Staining procedures, Ed 4a. Williams and Wilkins, Baltimore, pp. 315–339.

    Google Scholar 

  • Trainotti, L., Spolaore, S., Pavanello, A., Baldan, B. and Casadoro, G. 1999. A novel E-type endo β-1,4-glucanase with a putative cellulose-binding domain is highly expressed in ripening strawberry fruits. Plant Mol Biol 40: 323–332.

    Google Scholar 

  • Xu, Y., Buchholz, W.G., DeRose, R.T. and Hall, T.C. 1995. Characterization of a rice gene family encoding root-specific proteins. Plant Mol. Biol. 27: 237–248.

    Google Scholar 

  • Yamaguchi-Shinozaki, K. and Shinozaki, K. 1994. A novel cisacting element in a Arabidopsis gene is envolved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6: 251–264.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Muñoz-Blanco.

Additional information

The nucleotide sequence data reported corresponds to the accession number AF 026382 (cDNA) and AY530533 (genomic DNA).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanco-Portales, R., López-Raéz, J.A., Bellido, M.L. et al. A strawberry fruit-specific and ripening-related gene codes for a HyPRP protein involved in polyphenol anchoring. Plant Mol Biol 55, 763–780 (2004). https://doi.org/10.1007/s11103-005-1966-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-005-1966-z

Key words

Navigation