Plant Molecular Biology

, 57:503 | Cite as

pSAT vectors: a modular series of plasmids for autofluorescent protein tagging and expression of multiple genes in plants

  • Tzvi TzfiraEmail author
  • Guo-Wei Tian
  • Beno°t Lacroix
  • Shachi Vyas
  • Jianxiong Li
  • Yael Leitner-Dagan
  • Alexander Krichevsky
  • Tamir Taylor
  • Alexander Vainstein
  • Vitaly Citovsky


Autofluorescent protein tags represent one of the major and, perhaps, most powerful tools in modern cell biology for visualization of various cellular processes in vivo. In addition, advances in confocal microscopy and the development of autofluorescent proteins with different excitation and emission spectra allowed their simultaneous use for detection of multiple events in the same cell. Nevertheless, while autofluorescent tags are widely used in plant research, the need for a versatile and comprehensive set of vectors specifically designed for fluorescent tagging and transient and stable expression of multiple proteins in plant cells from a single plasmid has not been met by either the industrial or the academic communities. Here, we describe a new modular satellite (SAT) vector system that supports N- and C-terminal fusions to five different autofluorescent tags, EGFP, EYFP, Citrine-YFP, ECFP, and DsRed2. These vectors carry an expanded multiple cloning site that allows easy exchange of the target genes between different autofluorescence tags, and expression of the tagged proteins is controlled by constitutive promoters, which can be easily replaced with virtually any other promoter of interest. In addition, a series of SAT vectors has been adapted for high throughput Gateway recombination cloning. Furthermore, individual expression cassettes can be assembled into Agrobacterium binary plasmids, allowing efficient transient and stable expression of multiple autofluorescently tagged proteins from a single vector following its biolistic delivery or Agrobacterium-mediated genetic transformation.


autofluorescent proteins multiple gene expression plasmids 

Supplementary material

pSAT-Text-supplement-with_refs.doc (108 kb)
Supplementary material


  1. Aoyama, T., Chua, N.H. 1997A glucocorticoid-mediated transcriptional induction system in transgenic plantsPlant J.11605612PubMedCrossRefGoogle Scholar
  2. Baird, G.S., Zacharias, D.A., Tsien, R.Y. 2000Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coralProc. Natl. Acad. Sci. USA971198411989PubMedCrossRefGoogle Scholar
  3. Berg, R.H. 2004Evaluation of spectral imaging for plant cell analysisJ. Microsc.214174181PubMedCrossRefGoogle Scholar
  4. Bracha-Drori, K., Shichrur, K., Katz, A., Oliva, M., Angelovici, R., Yalovsky, S., Ohad, N. 2004Detection of protein–protein interactions in plants using bimolecular fluorescence complementationPlant J.40419427PubMedCrossRefGoogle Scholar
  5. Brandizzi, F., Irons, S.L., Johansen, J., Kotzer, A., Neumann, U. 2004GFP is the way to glow: bioimaging of the plant endomembrane systemJ. Microsc.214138158PubMedCrossRefGoogle Scholar
  6. Campbell, R.E., Tour, O., Palmer, A.E., Steinbach, P.A., Baird, G.S., Zacharias, D.A., Tsien, R.Y. 2004A monomeric red fluorescent proteinProc. Natl. Acad. Sci. USA9978777882CrossRefGoogle Scholar
  7. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., Prasher, D.C. 1994Green fluorescent protein as a marker for gene expressionScience263802805PubMedCrossRefGoogle Scholar
  8. Curtis, M.D., Grossniklaus, U. 2003A Gateway cloning vector set for high-throughput functional analysis of genes in plantaPlant Physiol.133462469PubMedCrossRefGoogle Scholar
  9. Day, R.N., Periasamy, A., Schaufele, F. 2001Fluorescence resonance energy transfer microscopy of localized protein interactions in the living cell nucleusMethods25418PubMedCrossRefGoogle Scholar
  10. Erhardt, M., Stoppin-Mellet, V., Campagne, S., Canaday, J., Mutterer, J., Fabian, T., Sauter, M., Muller, T., Peter, C., Lambert, A.M., Schmit, A.C. 2002The plant Spc98p homologue colocalizes with gamma-tubulin at microtubule nucleation sites and is required for microtubule nucleationJ Cell Sci.11524232431PubMedGoogle Scholar
  11. Erickson, M.G., Moon, D.L., Yue, D.T. 2003DsRed as a potential FRET partner with CFP and GFPBiophys. J.85599611PubMedGoogle Scholar
  12. Escobar, N.M., Haupt, S., Thow, G., Boevink, P., Chapman, S., Oparka, K. 2003High-throughput viral expression of cDNA-green fluorescent protein fusions reveals novel subcellular addresses and identifies unique proteins that interact with plasmodesmataPlant Cell1515071523PubMedCrossRefGoogle Scholar
  13. Finley, K.R., Davidson, A.E., Ekker, S.C. 2001Three-color imaging using fluorescent proteins in living zebrafish embryosBiotechniques316670, 72PubMedGoogle Scholar
  14. Galperin, E., Sorkin, A. 2003Visualization of Rab5 activity in living cells by FRET microscopy and influence of plasma-membrane-targeted Rab5 on clathrin-dependent endocytosisJ. Cell. Sci.11647994810PubMedCrossRefGoogle Scholar
  15. Gerlich, D., Mattes, J., Eils, R. 2003Quantitative motion analysis and visualization of cellular structuresMethods29313PubMedCrossRefGoogle Scholar
  16. Goderis, I.J., De Bolle, M.F., Francois, I.E., Wouters, P.F., Broekaert, W.F., Cammue, B.P. 2002A set of modular plant transformation vectors allowing flexible insertion of up to six expression unitsPlant. Mol. Biol.501727PubMedCrossRefGoogle Scholar
  17. Goodin, M.M., Austin, J., Tobias, R., Fujita, M., Morales, C., Jackson, A.O. 2001Interactions and nuclear import of the N and P proteins of sonchus yellow net virus, a plant nucleorhabdovirusJ. Virol.7593939406PubMedCrossRefGoogle Scholar
  18. Goodin, M.M., Dietzgen, R.G., Schichnes, D., Ruzin, S., Jackson, A.O. 2002pGD vectors: versatile tools for the expression of green and red fluorescent protein fusions in agroinfiltrated plant leavesPlant J.31375383PubMedCrossRefGoogle Scholar
  19. Griesbeck, O., G.S., , B., , Campbell, R.E., Zacharias, D.A., Tsien, R.Y. 2001Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applicationsJ. Biol. Chem.2762918829194PubMedCrossRefGoogle Scholar
  20. Hanson, M.R., Kohler, R.H. 2001GFP imaging: methodology and application to investigate cellular compartmentation in plantsJ. Exp. Bot.52529539PubMedCrossRefGoogle Scholar
  21. Harms, G.S., Cognet, L., Lommerse, P.H., Blab, G.A., Schmidt, T. 2001Autofluorescent proteins in single-molecule research: applications to live cell imaging microscopyBiophys. J.8023962408PubMedCrossRefGoogle Scholar
  22. Heim, R., Cubitt, A.B., Tsien, R.Y. 1995Improved green fluorescenceNature373663664PubMedCrossRefGoogle Scholar
  23. Heim, R., Tsien, R.Y. 1996Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transferCurr. Biol.6178182PubMedCrossRefGoogle Scholar
  24. Hink, M.A., Bisselin, T., Visser, A.J. 2002Imaging protein–protein interactions in living cellsPlant. Mol. Biol.50871883PubMedCrossRefGoogle Scholar
  25. Horsch, R.B., Fry, J.E., Hoffman, N.L., Eichholtz, D., Rogers, S.G., Fraley, R.T. 1985A simple and general method for transferring genes into plantsScience22712291231CrossRefGoogle Scholar
  26. Hrazdina, G., Zobel, A.M., Hoch, H.C. 1987Biochemical, immunological, and immunocytochemical evidence for the association of chalcone synthase with endoplasmic reticulum membranesProc. Natl. Acad. Sci. USA8489668970PubMedCrossRefGoogle Scholar
  27. Hull, R., Covey, S.N., Dale, P. 2002Genetically modified plants and the 35S promoter: assessing the risk and enhancing the debateMicrob. Ecol. Health Dis.1215Google Scholar
  28. Karimi, M., Inze, D., Depicker, A. 2002GATEWAYTM vectors for Agrobacterium-mediated plant transformationTrends Plant Sci.7193195PubMedCrossRefGoogle Scholar
  29. Lacroix, B., Vaidya, M., Tzfira, T., Citovsky, V. 2005. The VirE3 protein of Agrobacterium mimics a host cell function required for plant genetic transformation. EMBO JGoogle Scholar
  30. Ludin, B., Matus, A. 1998GFP illuminates the cytoskeletonTrends Cell Biol.87277PubMedCrossRefGoogle Scholar
  31. March, J.C., Rao, G., Bentley, W.E. 2003Biotechnological applications of green fluorescent proteinAppl. Microbiol. Biotechnol.62303315PubMedCrossRefGoogle Scholar
  32. Matz, M.V., Fradkov, A.F., Labas, Y.A., Savitsky, A.P., Zaraisky, A.G., Markelov, M.L., Lukyanov, S.A. 1999Fluorescent proteins from nonbioluminescent Anthozoa speciesNat. Biotechnol.17969973PubMedCrossRefGoogle Scholar
  33. Michalet, X., Kapanidis, A.N., Laurence, T., Pinaud, F., Doose, S., Pflughoefft, M., Weiss, S. 2003The power and prospects of fluorescence microscopies and spectroscopiesAnnu. Rev. Biophys. Biomol. Struct.32161182PubMedCrossRefGoogle Scholar
  34. Miyawaki, A. 2003Fluorescence imaging of physiological activity in complex systems using GFP-based probesCurr. Opin. Neurobiol.13591596PubMedCrossRefGoogle Scholar
  35. Nagai, T., Ibata, K., Park, E.S., Kubota, M., Mikoshiba, K., Miyawaki, A. 2002A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applicationsNat. Biotechnol.208790PubMedCrossRefGoogle Scholar
  36. Pelletier, M.K., Shirley, B.W. 1996Analysis of flavanone 3-hydroxylase in Arabidopsis seedlings. Coordinate regulation with chalcone synthase and chalcone isomerasePlant Physiol.111339345PubMedCrossRefGoogle Scholar
  37. Philipps, B., Hennecke, J., Glockshuber, R. 2003FRET-based in vivo screening for protein folding and increased protein stabilityJ. Mol. Biol.327239249PubMedCrossRefGoogle Scholar
  38. Pollok, B.A., Heim, R. 1999Using GFP in FRET-based applicationsTrends Cell Biol.95760PubMedCrossRefGoogle Scholar
  39. Rehm, M., Dussmann, H., Prehn, J.H. 2003Real-time single cell analysis of Smac/DIABLO release during apoptosisJ Cell Biol.16210311043PubMedCrossRefGoogle Scholar
  40. Restrepo, M.A., Freed, D.D., Carrington, J.C. 1990Nuclear transport of plant potyviral proteinsPlant Cell.2987998PubMedCrossRefGoogle Scholar
  41. Rolls, M.M., Hall, D.H., Victor, M., Stelzer, E.H., Rapoport, T.A. 2002Targeting of rough endoplasmic reticulum membrane proteins and ribosomes in invertebrate neuronsMol. Biol. Cell.1317781791PubMedCrossRefGoogle Scholar
  42. Saslowsky, D., Winkel-Shirley, B. 2001Localization of flavonoid enzymes in Arabidopsis rootsPlant J.273748PubMedCrossRefGoogle Scholar
  43. Stewart, C.N.,Jr. 2001The utility of green fluorescent protein in transgenic plantsPlant Cell Rep.20376382PubMedCrossRefGoogle Scholar
  44. Tian, G.W., Mohanty, A., Chary, S.N., Li, S., Paap, B., Drakakaki, G., Kopec, C.D., Li, J., Ehrhardt, D., Jackson, D., Rhee, S.Y., Raikhel, N.V., Citovsky, V. 2004High-throughput fluorescent tagging of full-length Arabidopsis gene products in plantaPlant Physiol.1352538PubMedCrossRefGoogle Scholar
  45. Tsien, R.Y. 1998The green fluorescent proteinAnnu. Rev. Biochem.67509544PubMedCrossRefGoogle Scholar
  46. Tsien, R.Y., Miyawaki, A. 1998Seeing the machinery of live cellsScience28019541955PubMedCrossRefGoogle Scholar
  47. Tzfira, T., Vaidya, M., Citovsky, V. 2001VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivityEMBO J.2035963607PubMedCrossRefGoogle Scholar
  48. Tzfira, T., Vaidya, M., Citovsky, V. 2002Increasing plant susceptibility to Agrobacterium infection by overexpression of the Arabidopsis VIP1 geneProc. Natl. Acad. Sci. USA991043510440PubMedCrossRefGoogle Scholar
  49. Tzfira, T., Vaidya, M., Citovsky, V. 2004Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium Nature4318792PubMedCrossRefGoogle Scholar
  50. Van Damme, D., Van Poucke, K., Boutant, E., Ritzenthaler, C., Inze, D., Geelen, D. 2004In Vivo dynamics and differential microtubule-binding activities of MAP65 proteinsPlant Physiol.13639563967PubMedCrossRefGoogle Scholar
  51. Vishnevetsky, M., Ovadis, M., Itzhaki, H., Levy, M., Libal-Weksler, Y., Adam, Z., Vainstein, A. 1996Molecular cloning of a carotenoid-associated protein from Cucumis sativus corollas: homologous genes involved in carotenoid sequestration in chromoplastsPlant J.1011111118PubMedCrossRefGoogle Scholar
  52. Vishnevetsky, M., Ovadis, M., Vainstein, A. 1999Carotenoid sequestration in plants: the role of carotenoid-associated proteinsTrends Plant Sci.4232235PubMedCrossRefGoogle Scholar
  53. Walhout, A., Temple, G., Brasch, M., Hartley, J., Lorson, M., Heuvel, S., Vidal, M. 2000GATEWAY recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomesMeth. Enzymol.328575592PubMedGoogle Scholar
  54. Walter, M., Chaban, C., Sch□tze, K., Batistic, O., Weckermann, K., Nüke, C., Blazevic, D., Grefen, C., Schumacher, K., Oecking, C., Harter, K., Kudla, J. 2004Visualization of protein interactions in living plant cells using bimolecular fluorescence complementationPlant J.40428438PubMedCrossRefGoogle Scholar
  55. Yang, M., Li, L., Jiang, P., Moossa, A.R., Penman, S., Hoffman, R.M. 2003Dual-color fluorescence imaging distinguishes tumor cells from induced host angiogenic vessels and stromal cellsProc. Natl. Acad. Sci. USA1001425914262PubMedCrossRefGoogle Scholar
  56. Yang, T.T., Cheng, L., Kain, S.R. 1996Optimized codon usage and chromophore mutations provide enhanced sensitivity with the green fluorescent proteinNucleic Acids Res.2445924593PubMedCrossRefGoogle Scholar
  57. Zemanova, L., Schenk, A., Valler, M.J., Nienhaus, G.U., Heilker, R. 2003Confocal optics microscopy for biochemical and cellular high-throughput screeningDrug Discov. Today.810851093PubMedCrossRefGoogle Scholar
  58. Zimmermann, T., Rietdorf, J., Pepperkok, R. 2003Spectral imaging and its applications in live cell microscopyFEBS Lett.5468792PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Tzvi Tzfira
    • 1
    Email author
  • Guo-Wei Tian
    • 1
  • Beno°t Lacroix
    • 1
  • Shachi Vyas
    • 1
  • Jianxiong Li
    • 1
  • Yael Leitner-Dagan
    • 2
  • Alexander Krichevsky
    • 1
  • Tamir Taylor
    • 3
  • Alexander Vainstein
    • 2
  • Vitaly Citovsky
    • 1
  1. 1.Department of Biochemistry and Cell BiologyState University of New YorkStony BrookUSA
  2. 2.The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agricultural, Food and Environmental Quality SciencesThe Hebrew University of JerusalemRehovotIsrael
  3. 3.Ward Melville High SchoolEast SetauketUSA

Personalised recommendations