Skip to main content
Log in

Association of diamine oxidase and S-adenosylhomocysteine hydrolase in Nicotiana tabacum extracts

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The oxidative deamination of methylated putrescine by a diamine oxidase activity (DAO) is an important step in the biosynthesis of nicotine in tobacco and tropane alkaloids in several Solanaceous plants. A polyclonal rabbit antiserum was previously developed to a purported purified DAO enzyme from Nicotiana tabacum. The antiserum bound to a single 53 kDa protein and immunoprecipitated 80 of DAO activity from tobacco root extracts. In an effort to obtain DAO cDNAs, this antiserum was used to screen a tobacco cDNA expression library and three distinct immunoreactive cDNA clones were isolated. These cDNAs encoded predicted proteins that were either identical or nearly identical to predicted S-adenosylhomocysteine hydrolase (SAHH) from two Nicotiana species. Thus, the rabbit antiserum was not specific to DAO, even though it immunodepleted the majority of DAO activity from root extracts. Alternative hypotheses to explain the DAO immunodepletion results (such as poisoning of DAO activity or that SAHH is a bifunctional enzyme) were tested and ruled out. Therefore, we hypothesize that SAHH associates with DAO as part of a larger multienzyme complex that may function in planta as a nicotine metabolic channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ausubel, F. A., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. 2004. Current Protocols in Molecular Biology. John Wiley & Sons, New York.

    Google Scholar 

  • Baldwin, I. T. 2001. An ecologically motivated analysis of plant-herbivore interactions in native tobacco. Plant Physiol. 127: 1449-1458.

    PubMed  Google Scholar 

  • Bartel, R. L. and Borchardt, R. T. 1984. Effects of adenosine dialdehyde on S-adenosylhomocysteine hydrolase and S adenosylmethionine-dependent transmethylations in mouse L929 cells. Mol. Pharmacol. 25: 418-424.

    PubMed  Google Scholar 

  • Borchardt, R. T., Keller, B. T. and Patel-Thombre, U. 1984. Neplanocin A. A potent inhibitor of S-adenosylhomocysteine hydrolase and of vaccinia virus multiplication in mouse L929 cells. J. Biol. Chem. 259: 4353-4358.

    PubMed  Google Scholar 

  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.

    PubMed  Google Scholar 

  • Bush, L. P., Fannin, F. F., Chelvarajan, R. L. and Burton, H. R. 1993. Biosynthesis and metabolism of nicotine and related alkaloids. In: Gorrod, J. W. and Wahren, J. (Eds. ) Nicotine and Related Alkaloids: Absorption, Distribution, Metabolism and Excretion, pp. 1-30. Chapman and Hall Ltd., pLondon, UK.

  • Cooper, B., Hutchison, D., Park, S., Guimil, S., Luginbuhl, P., Ellero, C., Goff, S. A. and Glazebrook, J. 2003. Identification of rice (Oryza sativa )proteins linked to the cyclin-mediated regulation of the cell cycle. Plant Mol. Biol. 53: 273-279.

    PubMed  Google Scholar 

  • Davies, H. M., Hawkins, D. J. and Smith, L. A. 1989. Quinoprotein characteristics of N-methylputrescine oxidase from tobacco roots. Phytochemistry 28: 1573-1578.

    Google Scholar 

  • De Luca, V. and Ibrahim, R. K. 1985. Enzymatic synthesis of polymethylated. avonols in Chrysosplenium americanum. II. Substrate interaction and product inhibition studies of flavonol 3-, 6-, and 40-O-methyltransferases. Arch. Biochem. Biophys. 238: 606-618.

    PubMed  Google Scholar 

  • Goodspeed, T. H. 1954. The Genus Nicotiana;Origins, Relationships, and Evolution of its Species in the Light of their Distribution, Morphology, and Cytogenetics. Chronica Botanica Co., Waltham, MA., USA.

    Google Scholar 

  • Hashimoto, T., Mitani, A. and Yamada, Y. 1990. Diamine oxidase from cultured roots of Hyoscyamus niger: its function in tropane alkaloid biosynthesis. Plant Physiol. 93: 216-221.

    Google Scholar 

  • Hashimoto, T. and Yamada, Y. 1994. Alkaloid biogenesis: molecular aspects. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 257-285.

    Google Scholar 

  • Haslam, S. C. and Young, T. W. 1992. Purification of N-methylputrescine oxidase from Nicotiana rustica. Phytochemistry 31: 4075-4079.

    Google Scholar 

  • Hasobe, M., McKee, J. G. and Borchardt, R. T. 1989. Relationship between intracellular concentration of S-adenosylhomocysteine and inhibition of vaccinia virus replication and inhibition of murine L-929 cell growth. Antimicrob. Agents Chemother. 33: 828-834.

    PubMed  Google Scholar 

  • Heggestad, H. E. 1966. Registration of Burley 1, Burley 2, Burley 11A, Burley 11B, Burley 21, Burley 37, and Burley 49 Tobaccos. Crop Sci. 6: 612.

    Google Scholar 

  • Hibi, N., Higashiguchi, S., Hashimoto, T. and Yamada, Y. 1994. Gene expression in tobacco low-nicotine mutants. Plant Cell 6: 723-735.

    PubMed  Google Scholar 

  • Holmstedt, B., Larsson, L. and Tham, R. 1961. Further studies of a spectrophotometric method for the determination of diamine oxidase activity. Biochim. Biophys. Acta 48: 182-186.

    PubMed  Google Scholar 

  • Keller, B. T. and Borchardt, R. T. 1987. Adenosine dialdehyde: a potent inhibitor of vaccinia virus multiplication in mouse L929 cells. Mol. Pharmacol. 31: 485-492.

    PubMed  Google Scholar 

  • Kutchan, T. M. 1998. Molecular genetics of plant alkaloid biosynthesis. In: Cordell, G. A. (ed. )Alkaloids (San Diego), vol. 50. Academic Press, Inc., San Diego, CA, USA, pp. 257-316.

    Google Scholar 

  • Masuta, C., Tanaka, H., Uehara, K., Kuwata, S., Koiwai, A. and Noma, M. 1995. Broad resistance to plant viruses in transgenic plants conferred by antisense inhibition of a host gene essential in S-adenosylmethionine-dependent transmethylation reactions. Proc. Natl. Acad. Sci. USA 92: 6117-6121.

    PubMed  Google Scholar 

  • McLauchlan, W. R., McKee, R. A. and Evans, D. M. 1993. The purification and immunocharacterisation of N-methylputrescine oxidase from transformed root cultures of Nicotiana tabacum L. cv. SC58. Planta 191: 440-445.

    Google Scholar 

  • Mitsui, S. and Sugiura, M. 1993. Purification and properties of cytokinin-binding proteins from tobacco leaves. Plant Cell. Physiol. 34: 543-547.

    Google Scholar 

  • Mitsui, S., Wakasugi, T. and Sugiura, M. 1993. A cDNA encoding the 57 kDa subunit of a cytokinin-binding protein complex from tobacco: the subunit has high homology to S-adenosyl-L L-homocysteine hydrolase. Plant Cell Physiol. 34: 1089-1096.

    Google Scholar 

  • Mitsui, S., Wakasugi, T. and Sugiura, M. 1996. A cytokininbinding protein complex from tobacco leaves. Plant Growth Regul. 18: 39-43.

    Google Scholar 

  • Mizusaki, S., Tanabe, Y., Noguchi, M. and Tamaki, E. 1971. Phytochemical studies on tobacco alkaloids XIV. The occurrence and properties of putrescine N-methyltransferase in tobacco roots. Plant Cell Physiol. 12: 633-640.

    Google Scholar 

  • Mizusaki, S., Tanabe, Y., Noguchi, M. and Tamaki, E. 1972. N-methylputrescine oxidase from tobacco roots. Phytochemistry 11: 2757-2762.

    Google Scholar 

  • Mizusaki, S., Tanabe, Y., Noguchi, M. and Tamaki, E. 1973. Changes in the activities of ornithine decarboxylase, putrescine N-methyltransferase and N-methylputrescine oxidase in tobacco roots in relation to nicotine biosynthesis. Plant Cell Physiol. 14: 103-110.

    Google Scholar 

  • Ovadi, J. 1991. Physiological signi cance of metabolic channeling. J. Theor. Biol. 152: 1-22.

    Google Scholar 

  • Ramakrishnan, V. and Borchardt, R. T. 1987. Adenosine dialdehyde and neplanocin A: potent inhibitors of S-adenosylhomocysteine hydrolase in neuroblastoma N2a cells. Neurochem. Int. 10: 423-431.

    Google Scholar 

  • Riechers, D. E. and Timko, M. P. 1999. Structure and expression of the gene family encoding putrescine N-methyltransferase in Nicotiana tabacum: new clues to the evolutionary origin of cultivated tobacco. Plant Mol. Biol. 41: 387-401.

    PubMed  Google Scholar 

  • Saunders, J. Q. and Bush, L. P. 1979. Nicotine biosynthetic enzyme activities in Nicotiana tabacum L. genotypes with di. erent alkaloid levels. Plant Physiol. 64: 236-240.

    Google Scholar 

  • Tanaka, H., Masuta, C., Uehara, K., Kataoka, J., Koiwai, A. and Noma, M. 1997. Morphological changes and hypomethylation of DNA in transgenic tobacco expressing antisense RNA of the S-adenosyl-L L-homocysteine hydrolase gene. Plant Mol. Biol. 35: 981-986.

    PubMed  Google Scholar 

  • The Arabidopsis Genome Initiative 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815.

    Google Scholar 

  • Turner, M. A., Yang, X., Yin, D., Kuczera, K., Borchardt, R. T. and Howell, P. L. 2000. Structure and function of S-adenosylhomocysteine hydrolase. Cell Biochem. Biophys. 33: 101-125.

    PubMed  Google Scholar 

  • Walton, N. J. and McLauchlan, W. R. 1990. Diamine oxidation and alkaloid production in transformed root cultures of Nicotiana tabacum. Phytochemistry 29: 1455-1457.

    Google Scholar 

  • Winkel, B. S. J. 2004. Metabolic channeling in plants. Ann. Rev. Plant Biol. 55: 85-107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heim, W.G., Jelesko, J.G. Association of diamine oxidase and S-adenosylhomocysteine hydrolase in Nicotiana tabacum extracts. Plant Mol Biol 56, 299–308 (2004). https://doi.org/10.1007/s11103-004-3352-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-004-3352-7

Navigation