Skip to main content
Log in

Bax-induced cell death of Arabidopsisis meditated through reactive oxygen-dependent and -independent processes

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

An Arabidopsisprotoplast system was developed for dissecting plant cell death in individual cells. Bax, a mammalian pro-apoptotic member of the Bcl-2 family, induces apoptotic-like cell death in Arabidopsis. Bax accumulation in Arabidopsismesophyll protoplasts expressing murine BaxcDNA from a glucocorticoid-inducible promoter results in cytological characteristics of apoptosis, namely DNA fragmentation, increased vacuolation, and loss of plasma membrane integrity. In vivotargeting analysis monitored using jellyfish green fluorescent protein (GFP) reporter indicated full-length Bax was localized to the mitochondria, as it does in animal cells. Deletion of the carboxyl-terminal transmembrane domain of Bax completely abolished targeting to mitochondria. Bax expression was followed by reactive oxygen species (ROS) accumulation. Treatment of protoplasts with the antioxidant N-acetyl- -cysteine (NAC) during induction of Bax expression strongly suppressed Bax-mediated ROS production and the cell death phenotype. However, some population of the ROS depleted cells still induced cell death, indicating that there is a process that Bax-mediated plant cell death is independent of ROS accumulation. Accordingly, suppression of Bax-mediated plant cell death also takes place in two different processes. Over-expression of a key redox-regulator, Arabidopsisnucleoside diphosphate kinase 2 (AtNDPK2) down-regulated ROS accumulation and suppressed Bax-mediated cell death and transient expression of ArabidopsisBax inhibitor-1 (AtBI-1) substantially suppressed Bax-induced cell death without altering cellular ROS level. Taken together, our results collectively suggest that the Bax-mediated cell death and its suppression in plants is mediated by ROS-dependent and -independent processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramovitch, R.B., Kim, Y.J., Chen, S., Dickman, M.B. and Martin, G.B. 2003. Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death. EMBO J. 20: 60–69.

    Google Scholar 

  • Belzacq, A.S., Vieira, H.L., Kroemer, G. and Brenner, C. 2002. The adenine nucleotide translocator in apoptosis. Biochimie 84: 167–176.

    Google Scholar 

  • Bethke, P.C., Lonsdale, J.E., Fath, A. and Jones, R.L. 1999. Hormonally regulated programmed cell death in barley aleurone cells. Plant Cell 11: 1033–1045.

    Google Scholar 

  • Byczkowski, J.Z. and Gessner, T. 1988. Biological role of superoxide ion radical. Int. J. Biochem. 20: 569–580.

    Google Scholar 

  • Dangl, J.L., Dietrich, R.A. and Thomas, H. 2000. Senescence and programmed cell death. In: B.B. Buchanan, W. Gruissem and R.L. Jones (Eds.), Biochemistry and Molecular Biology of Plants. Amer. Soci. Plant Physiol., MD. pp. 1044–1100.

  • Davis, S.J. and Vierstra, R.D. 1998. Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants. Plant Mol. Biol. 36: 521–528.

    Google Scholar 

  • del Pozo, O. and Lam, E. 1998. Caspases and programmed cell death in the hypersensitive response of plants to pathogens. Curr. Biol. 8: 1129–1132.

    Google Scholar 

  • Demaurex, N. and Distelhorst, C. 2003. Apoptosis-the calcium connection. Science 300: 65–67.

    Google Scholar 

  • Elbaz, M., Avni, A. and Weil, M. 2002. Constitutive caspaselike machinery executes programmed cell death in plant cells. Cell Death Differ. 9: 726–733.

    Google Scholar 

  • Fath, A., Bethke, P., Beligni, V. and Jones, R. 2002. Active oxygen and cell death in cereal aleurone cells. J. Exp. Bot. 53: 1273–1282.

    Google Scholar 

  • Filonova, L.H., Bozhkov, P.V., Brukhin, V.B., Daniel, G., Zhivotovsky, B. and von Arnold, S. 2000. Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce. J. Cell Sci. 113: 4399–4411.

    Google Scholar 

  • Fukamatsu, Y., Yabe, N. and Hasunuma, K. 2003. Arabidopsis NDK1 is a component of ROS signaling by interacting with three catalases. Plant Cell Physiol. 44: 982–989.

    Google Scholar 

  • Green, D.R. and Reed, J.C. (1998) Mitochondria and apoptosis. Science 281: 1309–1312.

    Google Scholar 

  • Greenhalf, W., Stephan, C. and Chaudhuri, B. 1996. Role of mitochondria and C-terminal membrane anchor of Bcl-2 in Bax induced growth arrest and mortality in Saccharo myces cerevisiae. FEBS Lett. 380: 169–175.

    Google Scholar 

  • Gross, A., McDonnell, J.M. and Korsmeyer, S.J. 1999. Bcl-2 family members and the mitochondria in apoptosis. Genes Dev. 13: 1899–1911.

    Google Scholar 

  • Hanada, M., Aimé-Sempé, C., Sato, T. and Reed, J.C. 1995. Structure-function analysis of Bcl-2 protein. Identification of conserved domains important for homodimerization with Bcl-2 and heterodimerization with Bax. J. Biol. Chem. 270: 11962–11969.

    Google Scholar 

  • Harris, M.H., Vander Heiden, M.G., Kron, S.J. and Thompson, C.B. 2000. Role of oxidative phosphorylation in Bax toxicity. Mol. Cell. Biol. 20: 3590–3596.

    Google Scholar 

  • Heikal, A.A., Hess, S.T., Baird, G.S., Tsien, R.Y. and Webb, Y.Y. 2000. Molecular spectroscopy and dynamics of intrinsically fluorescent proteins: coral red (dsRed) and yellow (Citrine). Proc. Natl. Acad. Sci. USA 97: 11996–12001.

    Google Scholar 

  • Hockenbery, D.M., Oltvai, Z.N., Yin, X.-M., Milliman, C.L. and Korsmeyer, S.J. 1993. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75: 241–251.

    Google Scholar 

  • Houot, V., Etienne, P., Petitot, A.-S., Barbier, S., Blein, J.-P. and Suty, L. 2001. Hydrogen peroxide induces programmed cell death features in cultured tobacco BY-2 cells, in a dosedepend manner. J. Exp. Bot. 52: 1721–1730.

    Google Scholar 

  • Hûckelhoven, R., Dechert, C. and Kogel, K.H. 2003. Overexpression of barley BAX inhibitor 1 induces breakdown of Mlo-mediated penetration resistance to Blumeria graminis. Proc. Natl. Acad. Sci. USA 100: 5555–5560.

    Google Scholar 

  • Huh, G.-H., Damsz, B., Matsumoto, T.K., Reddy, M.P., Rus, A.M., Ibeas, J., Narasimhan, M.L., Bressan, R.A. and Hasegawa, P.M. 2002. Salt causes ion disequilibriuminduced programmed cell death in yeast and plants. Plant J. 29: 649–659.

    Google Scholar 

  • Jabs, T. 1999. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem. Pharm. 57: 231–245.

    Google Scholar 

  • Jacobson, M.D. and Raff, M.C. 1995. Programmed cell death and Bcl-2 protection in very low oxygen. Nature 374: 814–816.

    Google Scholar 

  • Jin, J.B., Bae, H., Kim, S.J., Jin, Y.H., Goh, C.H., Kim, D.H., Lee, Y.J., Tse, Y.C., Jiang, L. and Hwang, I. 2003. The Arabidopsis dynamin-like proteins ADL1C and ADL1E play a critical role in mitochondrial morphogenesis. Plant Cell 15: 2357–2369.

    Google Scholar 

  • Jin, J.B., Kim, Y.A., Kim, S.J., Lee, S.H., Kim, D.H., Cheong, G.W. and Hwang, I. 2001. A new dynamin-like protein, ADL6, is involved in trafficking from the trans-golgi network to the central vacuole in Arabidopsis. Plant Cell 13: 1511–1525.

    Google Scholar 

  • Jones, A. 2000. Does the plant mitochondrion integrate cellular stress and regulate programmed cell death? Trends Plant Sci. 5: 225–230.

    Google Scholar 

  • Joo, J.H., Bae, Y.S. and Lee, J.S. 2001. Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol. 126: 1055–1060.

    Google Scholar 

  • Jurgensmeier, J.M., Krajewski, S., Armstrong, R.C., Wilson, G.M., Oltersdorf, T., Fritz, L.C., Reed, J.C. and Ottilie, S. 1997. Bax-and Bak-induced cell death in the fission yeast Schizosaccharomyces pombe. Mol. Biol. Cell 8: 325–339.

    Google Scholar 

  • Kannan, K. and Jain, S.K. 2000. Oxidative stress and apoptosis. Pathophysiol. 7: 153–167.

    Google Scholar 

  • Kawai, M., Pan, L., Reed, J.C. and Uchimiya, H. 1999. Evolutionally conserved plant homologue of the Bax inhibitor-1 (BI-1) gene capable of suppressing Bax-induced cell death in yeast. FEBS Lett. 464: 143–147.

    Google Scholar 

  • Kawai-Yamada, M., Jin, L., Yoshinaga, K., Hirata, A. and Uchimiya, H. 2001. Mammalian Bax-induced plant cell death can be down-regulated by overexpression of Arabidopsis Bax Inhibitor-1 (AtBI-1). Proc. Natl. Acad. Sci. USA 98: 12295–12300.

    Google Scholar 

  • Kim, D.H., Eu, Y.J., Yoo, C.M., Kim, Y.W., Pih, K.T., Jin, J.B., Kim, S.J., Stenmark, H. and Hwang, I. 2001. Trafficking of phosphatidylinositol 3-phosphate from the trans-golgi network to the lumen of the central vacuole in plant cells. Plant Cell 13: 287–301.

    Google Scholar 

  • Kroemer, G. and Reed, J.C. 2000. Mitochondrial control of cell death. Nature Med. 6: 513–519.

    Google Scholar 

  • Lacomme, C. and Cruz, S.S. 1999. Bax-induced cell death in tobacco is similar to the hypersensitive response. Proc. Natl. Acad. Sci. USA 96: 7956–7961.

    Google Scholar 

  • Lam, E., Kato, N. and Lawton, M. 2001. Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411: 848–853.

    Google Scholar 

  • Levine, A., Belenghi, B., Damari-Weisler, H. and Granot, D. 2001. Vesicle-associated membrane protein of Arabidopsis suppresses Bax-induced apoptosis in yeast downstream of oxidative burst. J. Biol. Chem. 276: 46284–46289.

    Google Scholar 

  • Madeo, F., Engelhardt, S., Herker, E., Lehmann, N., Maldener, C., Proksch, A., Wissing, S. and Fröhlich, K.-U. 2002. Apoptosis in yeast: a new model system with applications in cell biology and medicine. Curr. Genet. 41: 208–216.

    Google Scholar 

  • Madeo, F., Fröhlich, E., Ligr, M., Grey, M., Sigrist, S.J., Wolf, D.H. and Fröhlich, K.-U. 1999. Oxygen stress: a regulator of apoptosis in yeast. J. Cell Biol. 145: 757–767.

    Google Scholar 

  • Matsumura, H., Nirasawa, S., Kiba, A., Urasaki, N., Saitoh, H., Ito, M., Kawai-Yamada, M., Uchimiya, H. and Terauchi, R. 2003. Overexpression of Bax inhibitor suppresses the fungal elicitor-induced cell death in rice (Oryza sativa L.) cells. Plant J. 33: 425–434.

    Google Scholar 

  • Mitsuhara, I., Malik, K.A., Miura, M. and Ohashi, Y. 1999. Animal cell death suppressors Bcl-XL and Ced-9 inhibit cell death in tobacco plants. Curr. Biol. 9: 775–778.

    Google Scholar 

  • Moon, H., Baek, D., Lee, B., Prasad, D.T., Lee, S.Y., Cho, M.J., Lim, C.O., Choi, M.S., Bahk, J., Kim, M.O., Hong, J.C. and Yun, D.-J. 2002. Soybean ascorbate peroxidase suppresses bax-induced apoptosis in yeast by inhibiting oxygen radical generation. Biochem. Biophys. Res. Commun. 290: 457–462.

    Google Scholar 

  • Moon, H., Lee, B., Choi, G., Shin, D.J., Prasad, D.T., Lee, O., Kwak, S.-S., Kim, D.H., Nam, J., Bahk, J., Hong, J.C., Lee, S., Cho, M.J., Lim, C.O. and Yun, D.-J. 2003. Nucleoside diphosphate kinase 2 interacts with two oxidative stress activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc. Natl. Acad. Sci. USA 100: 358–363.

    Google Scholar 

  • Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15: 473–497.

    Google Scholar 

  • Niwa, Y., Hirano, T., Yoshimoto, K., Shimizu, M. and Kobayashi, H. 1999. Non-invasive quantitative detection and applications of non-toxic, S65T-type green fluorescent protein in living plants. Plant J. 18: 455–463.

    Google Scholar 

  • Punj, V. and Chakrabarty, A.M. 2003. Redox proteins in mammalian cell death: an evolutionarily conserved function in mitochondria and prokaryotes. Cell Microbiol. 5: 225–231.

    Google Scholar 

  • Qiao, J., Mitsuhara, I., Yazaki, Y., Sakano, K., Gotoh, Y., Miura, M. and Ohashi, Y. 2002. Enhanced resistance to salt, cold and wound stresses by overproduction of animal cell death suppressors Bcl-xL and Ced-9 in tobacco cells-their possible contribution through improved function of organella. Plant Cell Physiol. 43: 992–1005.

    Google Scholar 

  • Salvioli, S., Bonafe, M., Capri, M., Monti, D. and Franceschi, C. 2001. Mitochondria, aging and longevity-a new perspective. FEBS Lett. 492: 9–13.

    Google Scholar 

  • Sanchez, P., Zabala, M.T. and Grant, M. 2000. AtBI-1, a plant homologue of Bax inhibitor-1, suppresses Bax-induced cell death in yeast and is rapidly upregulated during wounding and pathogen challenge. Plant J. 21: 393–399.

    Google Scholar 

  • Schulz, J.B., Weller, M. and Klockgether, T. 1996. Potassium deprivation-induced apoptosis of cerebellar granule neurons: a sequential requirement for new mRNA and protein synthesis, ICE-like protease activity, and reactive oxygen species. J. Neurosci. 16: 4696–4706.

    Google Scholar 

  • Scorrano, L. and Korsmeyer, S.J. 2003. Mechanism of cytochrome c release by proapoptotic BCL-2 family members. Biochem. Biophys. Res. Commun. 304: 437–444.

    Google Scholar 

  • Solomon, M., Belenghi, B., Delledonne, M. and Levine, A. 1999. The involvement of cysteine proteases and protease inhibitor genes in programmed cell death in plants. Plant Cell 11: 431–443.

    Google Scholar 

  • Steller, H. 1995. Mechanisms and genes of cellular suicide. Science 267: 1445–1449.

    Google Scholar 

  • Tsujimoto, Y. and Shimizu, S. 2002. The voltage-dependent anion channel: an essential player in apoptosis. Biochimie 84: 187–193.

    Google Scholar 

  • Uren, A.G., O'Rourke, K., Aravind, L.A., Pisabarro, M.T., Seshagiri, S., Koonin, E.V. and Dixit, V.M. 2000. Identifi-cation of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol. Cell 6: 961–967.

    Google Scholar 

  • Willis, S., Day, C.L., Hind, M.G. and Huang, D.C.S. 2003. The Bcl-2-regulated apoptotic pathway. J. Cell Sci. 116: 4053–4056.

    Google Scholar 

  • Xu, Q. and Reed, J.C. 1998. Bax inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast. Mol. Cell 1: 337–346.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baek, D., Nam, J., koo, Y.D. et al. Bax-induced cell death of Arabidopsisis meditated through reactive oxygen-dependent and -independent processes. Plant Mol Biol 56, 15–27 (2004). https://doi.org/10.1007/s11103-004-3096-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-004-3096-4

Navigation