Skip to main content
Log in

Suppression of phenylalanine ammonia lyase expression in sugar beet by the fungal pathogen Cercospora beticola is mediated at the core promoter of the gene

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The suppression of plant defence reactions plays a crucial role in causing plant diseases. In this report, we show that inducible plant defences are repressed during the development of Cercospora leaf spot disease. In the early phase of infection of sugar beet (Beta vulgaris L.) leaves with the phytopathogenic fungus Cercospora beticola, a reduction in the expression of the phenylalanine ammonia lyase (BvPAL) and cinnamic acid 4-hydroxylase (BvC4H) genes was observed. BvPAL reduction was found at the transcript and enzyme activity levels.

In order to analyse the signal transduction process responsible for suppression, the BvPAL promoter was isolated. An abbreviated 5'- and 3'- deletion series of the promoter was effected using transient biolistic assays, which showed that the activity of a truncated promoter from positions −34 to +246, relative to the transcriptional starting site, retains approximately 30 of the activity of the full-length promoter.

The region within the BvPAL promoter required for the reduction in transcription was identified as being positions −34 to +45, with respect to the start of the transcription. This region is equivalent to the core promoter, characterised by the TATA-box, an initiator (Inr) and an unknown downstream element in the region between +7 and +45. These data indicate that (1) plant defence responses are repressed during the development of Cercospora leaf spot disease and (2) the PAL core promoter is involved in the detection of the repression signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achard, P., Lagrange, T., El-Zanaty, A.F. and Mache, R. 2003. Architecture and transcriptional activity of the initiator element of the TATA-less RPL21 gene. Plant J. 35: 743–752.

    Google Scholar 

  • Allwood, E.G., Davies, D.R., Gerrish, C., Ellis, B.E. and Bolwell G.P. 1999. Phosphorylation of phenylalanine ammonialyase: evidence for a novel protein kinase and identification of the phosphorylated residue. FEBS Lett. 457: 47–52.

    Google Scholar 

  • Assante, G., Locci, R., Camarde, L. Merlini, L. and Nasini, G. 1977. Screening of the genus Cercospora for secondary metabolites. Phytochemistry 16: 243–247.

    Google Scholar 

  • Bevan, M., Shufflebottom, D., Edwards, K., Jefferson, R. and Schuch, W. 1990. Tissue-and cell-specific activity of a phenylalanine ammonia-lyase promoter in transgenic plants. EMBO J. 8: 1899–1906.

    Google Scholar 

  • Bouarab, K., Melton, R., Peart, D., Baulcombe D. and Osbourn, A. 2002. A saponin-detoxifying enzyme mediates suppression of plant defences. Nature 418: 889–892.

    Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Google Scholar 

  • Butler, J.E. and Kadonaga, J.T. 2002. RNA polymerase II core promoter: a key component in the regulation of gene expression. Genes Dev. 16: 2583–2592.

    Google Scholar 

  • Callahan T.M., Rose M.S., Meade M.J., Ehrenshaft M. and Upchurch R.G. 1999. CFP, the putative cercosporin transporter of Cercospora kikuchii, is required for wild type cercosporin production, resistance, and virulence on soybean. Mol. Plant Microbe Interact. 12: 901–910.

    Google Scholar 

  • Daraselia, N.D., Tarchevskaya, S. and Narita, J.O. 1996. The promoter for tomato 3-hydroxy-3-methylglutaryl coenzyme A reductase gene 2 has unusual regulatory elements that direct high-level expression. Plant Physiol. 112: 727–733.

    Google Scholar 

  • Daub, M.E. 1982. Cercosporin, a photosensitizing toxin from Cercospora species. Phytopathology 72: 370–374.

    Google Scholar 

  • Daub, M.E. and Ehrenshaft, M. 2000. The photoactivated Cercospora toxin Cercosporin: contributions to plant disease and fundamental biology. Annu. Rev. Phytopathol. 38: 461–490.

    Google Scholar 

  • Daub, M.E. and Hangarter, R.P. 1983. Changes in tobacco cell membrane composition and structure caused by the fungal toxin, cercosporin. Plant Physiol. 71: 763–766.

    Google Scholar 

  • de Boer, G.J., Testerink, C., Pielage, G., Nijkamp, H.J. and Stuitje, A.R. 1999. Sequences surrounding the transcription initiation site of the Arabidopsis enoyl-acyl carrier protein reductase gene control seed expression in transgenic tobacco. Plant Mol Biol. 39: 1197–1207.

    Google Scholar 

  • Dixon, R.A. and Paiva, N.L. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell 7: 1085–1097.

    Google Scholar 

  • Ebel, J. and Mitho¨ fer, A. 1998. Early events in the elicitation of plant defence. Planta 206: 335–348.

    Google Scholar 

  • Emami, K.H., Jain, A. and Smale, S.T. 1997. Mechanism of synergy between TATA and initiator: synergistic binding of TFIID following a putative TFIIA-induced isomerization. Genes Dev. 11: 3007–3019.

    Google Scholar 

  • Emami, K.H., Navarre, W.W. and Smale, S.T. 1995. Core promoter specificities of the Sp1 and VP16 transcriptional activation domains. Mol. Cell Biol. 15(11): 5906–5916.

    Google Scholar 

  • Eulgem, T., Rushton, P.J., Robatzek, S. and Somssich, I.E. 2000. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5: 199–206.

    Google Scholar 

  • Feindt, F., Mendgen, K. and Heitefuss, R. 1981. —Feinstruktur unterschiedlicher Zellwandreaktionen im Blattparenchym anfa¨ lliger und resistenter Ru¨ ben (Beta vulgaris L.) nach Infektion mit Cercospora beticola Sacc. Phytopath. Z. 101: 248–264.

    Google Scholar 

  • Geffers, R., Sell, S., Cerff, R. and Hehl, R. 2001. The TATA box and a Myb binding site are essential for anaerobic expression of a maize GapC4 minimal promoter in tobacco. Biochim. Biophys. Acta 1521: 120–125.

    Google Scholar 

  • Gerlach, D. 1984. —Pilzbefall ho¨ herer Pflanzen. In Botanische Mikrotechnik. Eine Einfu¨ hrung. Georg Thieme Verlag, Stuttgart, pp. 225–226.

    Google Scholar 

  • Goudet, C., Milat, M.-L., Sentenac, H. and Thibaud, J.-B. 2000. Beticolins, non-peptidic, polycyclic molecules produced by the phytopathogenic fungus Cercospora beticola, as a new family of ion channel-forming toxins. Mol. Plant Microbe Interact. 13: 203–209.

    Google Scholar 

  • Hahlbrock, K. and Scheel, D. 1989. Physiology and molecular biology of phenylpropanoid metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 347–369.

    Google Scholar 

  • Hartmann, P.E., Dixon, W.J., Dahl, T.A. and Daub, M.E. 1988. Multiple modes of phytodynamic action by cercosporin. Photochem. Photobiol. 47: 699–703.

    Google Scholar 

  • Hauck, P. Thilmony, R. and He, S.Y. 2003. A Pseudomonas syringae type III effector suppresses cell wall-based extracellular defense in susceptible Arabidopsis plants. Proc. Natl. Acad. Sci. USA 100(14): 8577–8582.

    Google Scholar 

  • Herwig, R., Schulz, B., Weisshaar, B., Hennig, S., Steinfath, M., Drungowski, M., Stahl, D., Wruck, W., Menze, A., O'Brien, J., Lehrach, H. and Radelof, U. 2002. Construction of a 'unigene' cDNA clone set by oligonucleotide fingerprinting allows access to 25,000 potential sugar beet genes. Plant J. 32: 845–857.

    Google Scholar 

  • Higo, K., Ugawa, Y., Iwamoto, M. and Korenaga, T. 1999. Plant cis acting regulatory DNA elements (PLACE) database: 1999. Nucl. Acid Res. 27: 297–300.

    Google Scholar 

  • Hochheimer, A. and Tjian, R. 2003. Diversified transcription initiation complexes expand promoter selectivity and tissuespecific gene expression. Genes Dev. 17: 1309–1320.

    Google Scholar 

  • Hu, S.-L. and Manley, J.L. 1981. DNA sequence required for initiation of transcription in vitro from the major late promoter of adenovirus 2. Proc. Natl. Acad. Sci. USA 78(2): 820–824.

    Google Scholar 

  • Joos, H.J. and Hahlbrock, K. 1992. Phenylalanine ammonia lyase in potato (Solanum tuberosum L.). Genomic complexity, structural comparison of two selected genes and modes of expression. Eur. J. Biochem. 204: 621–629.

    Google Scholar 

  • Koopmann, E., Logemann, E. and Hahlbrock, K. 1999. Regulation and functional expression of cinnamate 4-hydroxylase from parsley. Plant Physiol. 119: 49–56.

    Google Scholar 

  • Kutach, A.K. and Kadonaga, J.T. 2000. The downstream promoter element DPE appears to be as widely used as the TATA box in Drosophila core promoters. Mol. Cell Biol. 20(13): 4754–4764.

    Google Scholar 

  • Lewis, B.A. and Orkin, S.H. 1995. A functional initiator element in the human ß-globin promoter. J. Biol. Chem. 270(47): 28139–28144.

    Google Scholar 

  • Logemann, E., Parniske, M. and Hahlbrock, K. 1995. Modes of expression and common structural features of the complete phenylalanine ammonia lyase gene family in parsley. Proc. Natl. Acad. Sci. USA 92: 5905–5909.

    Google Scholar 

  • Logemann, J., Schell, J. and Willmitzer, L. 1987. Improved method for the isolation of RNA from plant tissues. Anal. Biochem. 163: 16–20.

    Google Scholar 

  • Lois, R., Dietrich, A., Hahlbrock, K. and Schulz, W. 1989. A phenylalanine ammonia-lyase gene from parsley: structure, regulation and identification of elicitor and light responsive cis-acting elements. EMBO J. 8: 1641–1648.

    Google Scholar 

  • Maher, E.A., Bate, N.J., Ni, W., Elkind, Y., Dixon, R.A. and Lamb, C.J. 1994. Increased disease susceptibility of transgenic tobacco plants with suppressed levels of preformed phenylpropanoid products. Proc. Natl. Acad. Sci. USA 91: 7802–7806.

    Google Scholar 

  • Martinez, E. 2002. Multi-protein complexes in eukaryotic gene transcription. Plant Mol. Biol. 50: 925–947.

    Google Scholar 

  • Nakamura, M., Tsunoda, T. and Obokata, J. 2002. Photosynthesis nuclear genes generally lack TATA-boxes: a tobacco photosystem I gene responds to light through an initiator. Plant J. 29: 1–10.

    Google Scholar 

  • Ohl, S., Hedrick, S.A., Chory, J. and Lamb, C.J. 1990. Functional properties of a phenylalanine ammonia-lyase promoter from Arabidopsis. Plant Cell 2: 837–848.

    Google Scholar 

  • Pallas, J.A., Paiva, N.L., Lamb, C.J. and Dixon, R.A. 1996. Tobacco plants epigenetically suppressed in phenylalanine ammonia-lyase expression do not develop systemic acquired resistance in response to infection by tobacco mosaic virus. Plant J. 10: 281–293.

    Google Scholar 

  • Pellegrini L., Rohfritsch O., Fritig B. and Legrand, M. 1994. Phenylalanine ammonia-lyase in tobacco. Molecular cloning and gene expression during the hypersensitive reaction to tobacco mosaic virus and the response to a fungal elicitor. Plant Physiol. 106: 877–886.

    Google Scholar 

  • Roeder, R. 1996. The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem. Sci. 21: 327–335.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Sanford, J.C., Smith, F.D. and Russell, J.A. 1993. Optimizing the biolistic process for different biological applications. Methods Enzymol. 217: 483–509.

    Google Scholar 

  • Shadle, G.L., Wesley, V., Korth, K.L., Chen, F., Lamb, C. and Dixon, R.A. 2003. Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of L-phenylalanine ammonia-lyase. Phytochemistry 64: 153–161.

    Google Scholar 

  • Shim, W.B. and Dunkle, L.D. 2003. CZK3, a MAP kinase kinase kinase homolog in Cercospora zeae-maydis, regulates Cercosporin biosynthesis, fungal development, and pathogenesis. Mol. Plant Microbe Interact. 9: 760–768.

    Google Scholar 

  • Singh, K.B. 1998. Transcriptional regulation in plants: the importance of combinatorial control. Plant Physiol. 118: 1111–1120.

    Google Scholar 

  • Smale, S.T. and Kadonaga, J.T. 2003. The RNA Polymerase II core promoter. Annu. Rev. Biochem. 72: 449–479.

    Google Scholar 

  • Stahl, D.J., Theuerkauf A, Heitefuss, R. and Scha¨ fer, W. 1994. Cutinase of Nectria haematococca (Fusarium solani f. sp. pisi) is not required for fungal virulence or organ specifity on pea. Mol. Plant Microbe Interact. 7: 713–725.

    Google Scholar 

  • Upchurch, R.G., Walker, D.C., Rollins, J.A., Ehrenshaft, M. and Daub, M.E. 1991. Mutants of Cercospora kikuchii altered in Cercosporin synthesis and pathogenicity. Appl. Environ. Microbiol. 57: 2940–2945.

    Google Scholar 

  • Verrijzer, C.P. 2001. Transcription factor IID-not so basal after all. Science. 293: 2010–2011.

    Google Scholar 

  • Verrijzer, C.P. and Tjian, R. 1996. TAFs mediate transcriptional activation and promoter selectivity. Trends Biochem. Sci. 21: 338–342.

    Google Scholar 

  • Way, H.M., Kazan, K., Mitter, N., Goulter, K.C., Birch, R.G. and Manners, J.M. 2002. Constitutive expression of a phenylalanine ammonia-lyase gene from Stylosanthes humilis in transgenic tobacco leads to enhanced disease resistance but impaired plant growth. Physiol. Mol. Plant Pathol. 60: 275–282.

    Google Scholar 

  • Yamada, T., Hashimoto, H., Shirashi, T. and Oku, H. 1989. Suppression of pisatin, phenylalanine ammonia-lyase mRNA, and chalcone synthase mRNA accumulation by a putative pathogenicity factor from the fungus Mycoshaerella pinodes. Mol. PlantMicrobe Interact. 2: 256–261.

    Google Scholar 

  • Zhu, Q., Dabi, T. and Lamb, C. 1995. TATA box and initiator functions in the accurate transcription of a plant minimal promoter in vitro. Plant Cell. 7: 1681–1689.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, K., Heberle, B., Kurrasch, J. et al. Suppression of phenylalanine ammonia lyase expression in sugar beet by the fungal pathogen Cercospora beticola is mediated at the core promoter of the gene. Plant Mol Biol 55, 835–852 (2004). https://doi.org/10.1007/s11103-004-2141-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-004-2141-7

Navigation