Skip to main content

Advertisement

Log in

Identification of more than 200 glucose-responsive Arabidopsis genes none of which responds to 3-O-methylglucose or 6-deoxyglucose

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The response of some plant genes to glucose analogues 3-O-methylglucose (3OMG) or 6-deoxyglucose (6DOG) has been cited as evidence for metabolism-independent glucose signalling. To analyse such signalling using a genetic approach, we sought to identify Arabidopsis glucose-responsive genes which also respond to 3OMG and 6DOG in seedlings. Microarray analysis of gene expression in glucose-treated seedlings and RT-PCR analysis of glucose-treated leaf sections identified more than 200 glucose-responsive genes, but none responded to 3OMG or 6DOG. These data together with other published data on individual genes fail to identify any Arabidopsis sugar-responsive genes which also respond to 3OMG or 6DOG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barker, L., Kühn, C., Weise, A.., Schulz, A., Gebhardt, C., Hirner, B., Hellmann, H., Schulze, W., Ward, J. M. and Frommer, W. B. 2000. SUT2, a putative sucrose sensor in sieve elements. Plant Cell 12: 1153–1164.

    PubMed  Google Scholar 

  • Barth, I., Meyer, S. and Sauer, N. 2003. PmSUC3: Characterization of a SUT2/SUC3-type sucrose transporter from Plantago major. Plant Cell 15: 1375–1385.

    PubMed  Google Scholar 

  • Boyes, D. C., Zayed, A. M., Ascenzi, R., McCaskill, A. J., Hoffman, N. E., Davis, K. R. and Görlach, J. 2001. Growth stage-based phenotypic analysis of Arabidopsis: A model for high throughput functional genomics in plants. Plant Cell 13: 1499–1510.

    PubMed  Google Scholar 

  • Cheng, W. H., Taliercio, E. W. and Chourey, P. S. 1999. Sugars modulate an unusal mode of control of the cell-wall invertase gene (Incw 1) through its 3 'untranslated region in a cell suspension culture of maize. Proc. Natl. Acad. Sci. USA. 96: 10512–10517.

    PubMed  Google Scholar 

  • Chikano, H., Ogawa, M., Ikeda, Y., Koizumi, N., Kusano, T. and Sano, H. 2001. Two novel genes encoding SNF1-related protein kinases from Arabidopsis thaliana: differential accumulation of AtSR1 and AtSR2 transcripts in response to cytokinins and sugars, and phosphorylation of sucrose synthase by AtSR2. Mol. Gen. Genet. 264: 670–681.

    Google Scholar 

  • Ciereszko, I. and Kleczkowski, L. A. 2002. Glucose and mannose regulate the expression of a major sucrose synthase gene in Arabidopsis via hexokinase-dependent mechanisms. Plant Physiol. Biochem. 40: 907–911.

    Google Scholar 

  • Cortès, S., Gromova, M., Evrard, A., Roby, C., Heyraud, A., Rolin, D. B., Raymond, P. and Brouquisse, R. M. 2003. In plants, 3-O-methylglucose is phosphorylated by hexokinase but not perceived as a sugar. Plant Physiol. 131: 824–837.

    PubMed  Google Scholar 

  • Diez-Sampedro, A., Hirayama, B. A., Osswald, C., Gorboulev, V., Baumgarten, K., Volk, C., Wright, E. M. and Koepsell, H. 2003. A glucose sensor hiding in a family of tansporters. Proc. Natl. Acad. Sci. USA 100: 11753–11758.

    PubMed  Google Scholar 

  • Eckardt, N. A. 2003. The function of SUT2/SUC3 sucrose transporters: The debate continues. Plant Cell 15: 1259–1262.

    Google Scholar 

  • Ehness, R., Ecker, M., Godt, D. E. and Roitsch, T. 1997. Glucose and stress independently regulate source and sink metabolism and defence mechanisms via signal transduction pathways involving protein phosphorylation. Plant Cell 9: 1825–1841.

    PubMed  Google Scholar 

  • Fujiki, Y., Ito, M., Nishida, I. and Watanabe, A. 2000. Multiple signaling pathways in gene expression during sugar starvation. Pharmacological analysis of din gene expression in suspension-cultured cells of Arabidopsis Plant Physiol. 124: 1139–1147.

    PubMed  Google Scholar 

  • Forsberg, H. and Ljungdahl, P. O. 2001. Sensors of extracellular nutrients in Saccharomyces cerevisiae. Curr. Genet. 40: 91–109.

    PubMed  Google Scholar 

  • Gibson, S. I. 2000. Plant sugar-response pathways. Part of a complex regulatory web. Plant Physiol. 124: 1532–1539.

    PubMed  Google Scholar 

  • Godt, D. E., Riegel, A. and Roitsch, T. 1995. Regulation of sucrose synthase expression in Chenopodium rubrum: Characterization of sugar induced expression in photoautotrophic suspension cultures and sink tissue specific expression in plants. J. Plant Physiol. 146: 231–238.

    Google Scholar 

  • Graham, I. A., Denby, K. J. and Leaver, C. J. 1994. Carbon catabolite repression regulates glyoxylate cycle gene expression in cucumber. Plant Cell 6: 761–772.

    PubMed  Google Scholar 

  • Guillemain, G., Loizeau, M., Pincon-Raymond, M., Girard, J. and Leturque, A. 2000. The large intracytoplasmic loop of the glucose transporter GLUT2 is involved in glucose signaling in hepatic cells. J. Cell Sci. 113: 841–847.

    PubMed  Google Scholar 

  • Hilgarth, C., Sauer, N. and Tanner, W. 1991. Glucose increases the expression of the ATP/ADP translocator and the glyceraldehyde-3-phosphate dehydrogenase genes in Chlorella. J. Biol. Chem. 266: 24044–24047.

    PubMed  Google Scholar 

  • Ho, S. L., Chao, Y. C., Tong, W. F. and Yu, S. M. 2001. Sugar coordinately and differentially regulates growth-and stressrelated gene expression via a complex signal transduction network and multiple control mechanisms. Plant Physiol. 125: 877–890.

    PubMed  Google Scholar 

  • Hyde. R., Taylor, P. M. and Hundal, H. S. 2003. Amino acid transporters: roles in amino acid sensing and signalling in animal cells. Biochem. J. 373: 1–18.

    PubMed  Google Scholar 

  • Jang, J. C. and Sheen, J. 1994. Sugar sensing in higher plants. Plant Cell 6: 1665–1679.

    PubMed  Google Scholar 

  • Jang, J. C., Leo ´n, P., Zhou, L. and Sheen, J. 1997. Hexokinase as a sugar sensor in higher plants. Plant Cell 9: 5–19.

    PubMed  Google Scholar 

  • Koch, K. E. 1996. Carbohydrate modulated gene expression in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 509–540.

    PubMed  Google Scholar 

  • Krapp, A., Hofmann, B., Scha ¨fer, C. and Stitt, M. 1993. Regulation of the expression of rbcS and other photosynthetic genes by carbohydrates: a mechanism for the 'sink regulation 'of photosynthesis? Plant J. 3: 817–828.

    Google Scholar 

  • Lalonde, S., Boles, E., Hellmann, H., Barker, L., Patrick, J. W., Frommer, W. B. and Ward, J. M. 1999. The dual function of sugar carriers. Transport and sugar sensing. Plant Cell 11: 707–726.

    PubMed  Google Scholar 

  • Lee, E.-J., Koizumi, N. and Sano, H. 2004. Identification of genes that are up-regulated in concert during sugar depletion in Arabidopsis. Plant, Cell Environ. 27: 337–346.

    Google Scholar 

  • Lejay. L., Gansel, X., Cerezo, M., Tillard, P., Müller, C., Krapp, A., von Wire ´n, N., Daniel-Vedele, F. and Gojon, A. 2003. Regulation of root ion transporters by photosynthesis: Functional importance and relation with hexokinase. Plant Cell 15: 2218–2232.

    PubMed  Google Scholar 

  • Liao, Y. C. and Wang, A. Y. 2003. Sugar-modulated gene expression of sucrose synthase in suspension-cultured cells of rice. Physiol. Plant. 118: 319–327.

    Google Scholar 

  • Martin, T., Hellmann, H., Schmidt, R., Wilmitzer, L. and Frommer, W. B. 1997. Identification of mutants in metabolically regulated gene expression. Plant J. 11: 53–62.

    PubMed  Google Scholar 

  • Moore, B., Zhou, L., Rolland, F., Hall, Q., Cheng, W. H., Liu, Y. X., Hwang, I., Jones, T. and Sheen, J. 2003. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300: 332–336.

    PubMed  Google Scholar 

  • Oesterhelt, C. and Gross, W. 2002. Different sugar kinases are involved in the sugar sensing of Galdieria sulphuraria. Plant Physiol. 128: 291–299.

    PubMed  Google Scholar 

  • Özcan, S., Dover, J. and Johnston, M. 1998. Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae. EMBO J. 17: 2566–2573.

    PubMed  Google Scholar 

  • Pluthero, F. G. 1993. Rapid puri cation of high-activity Taq DNA polymerase. Nucl. Acids Res. 21: 4850–4851.

    PubMed  Google Scholar 

  • Redman, J. C., Haas, B. J., Tanimoto, G. And Town, C. D. 2004. Development and evaluation of an Arabidopsis whole genome Affymetrix probe array. Plant J. 38: 545–561.

    PubMed  Google Scholar 

  • Roitsch, T., Bittner, M. and Godt, D. E. 1995. Induction of apoplastic invertase of Chenopodium rubrum by D-glucose and a glucose analog and tissue-specific expression suggest a role in sink-source regulation. Plant Physiol. 108: 285–294.

    PubMed  Google Scholar 

  • Rook, F., Corke, F., Card, R., Munz, G., Smith, C. and Bevan, M. W. 2001. Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalling. Plant J. 2001 26: 421–433.

    Google Scholar 

  • Schneidereit, A., Scholz-Starke, J. and Büttner, M. 2003. Functional characterization and expression analysis of glucose-specific AtSTP9 monosaccharide transporter in pollen of Arabidopsis. Plant Physiol. 133: 182–190.

    PubMed  Google Scholar 

  • Sherson, S. M., Hemmann, G., Wallace, G., Forbes, S., Germain, V., Stadler, R., Bechtold, N., Sauer, N. and Smith, S. M. 2000. Monosaccharide/proton symporter At STP1 plays a major role in uptake and response of Arabidopsis seeds and seedlings to sugars. Plant J. 24: 849–857.

    PubMed  Google Scholar 

  • Smeekens, S. 2000. Sugar-induced signal transduction in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 49–81.

    PubMed  Google Scholar 

  • Smith, S. M., Fulton, D. C., Chia, T., Thorneycroft, D., Chapple, A., Dunstan, H., Hylton, C., Zeeman, S. C. and Smith, A. M. (2004) Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptionaland post-transcriptional regulation of starch metabolism in Arabidopsis leaves. Plant Physiol., in press.

  • Thum, K. E., Shin, M. J., Palenchar, P. M., Kouranov, A. and Coruzzi, G. M. (2004) Genome-wide investigation of light and carbon signalling interactions in Arabidopsis. Genome Biol. 5: R10.

    PubMed  Google Scholar 

  • Wipf, D., Ludewig, U., Tegeder, M., Rentsch, D., Koch, W. and Frommer, W. B. 2002. Conservation of amino acid transporters in fungi, plants and animals. Trends Biochem. Sci. 27: 139–47.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villadsen, D., Smith, S. Identification of more than 200 glucose-responsive Arabidopsis genes none of which responds to 3-O-methylglucose or 6-deoxyglucose. Plant Mol Biol 55, 467–477 (2004). https://doi.org/10.1007/s11103-004-1050-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-004-1050-0

Navigation