Skip to main content
Log in

Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

In plants, Glycoside Hydrolase (GH) Family 1 β-glycosidases are believed to play important roles in many diverse processes including chemical defense against herbivory, lignification, hydrolysis of cell wall-derived oligosaccharides during germination, and control of active phytohormone levels. Completion of the Arabidopsis thalianagenome sequencing project has enabled us, for the first time, to determine the total number of Family 1 members in a higher plant. Reiterative database searches revealed a multigene family of 48 members that includes eight probable pseudogenes. Manual reannotation and analysis of the entire family were undertaken to rectify existing misannotations and identify phylogenetic relationships among family members. Forty-seven members (designated BGLU1 through BGLU47) share a common evolutionary origin and were subdivided into approximately 10 subfamilies based on phylogenetic analysis and consideration of intron–exon organizations. The forty-eighth member of this family (At3g06510; sfr2) is a β-glucosidase-like gene that belongs to a distinct lineage. Information pertaining to expression patterns and potential functions of Arabidopsis GH Family 1 members is presented. To determine the biological function of all family members, we intend to investigate the substrate specificity of each mature hydrolase after its heterologous expression in the Pichia pastoris expression system. To test the validity of this approach, the BGLU44-encoded hydrolase was expressed in P. pastoris and purified to homogeneity. When tested against a wide range of natural and synthetic substrates, this enzyme showed a preference for β-mannosides including 1,4-β-D-mannooligosaccharides, suggesting that it may be involved in A. thaliana in degradation of mannans, galactomannans, or glucogalactomannans. Supporting this notion, BGLU44 shared high sequence identity and similar gene organization with tomato endosperm β-mannosidase and barley seed β-glucosidase/β-mannosidase BGQ60.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agerbirk, N., Petersen, B. L., Olsen, C. E., Halkier, B. A. and Nielsen, J. K. 2001. 1, 4-Dimethoxyglucobrassicin in Barbarea and 4-hydroxyglucobrassicin in Arabidopsis and Brassica. J. Agric. Food Chem. 49: 1502-1507.

    PubMed  Google Scholar 

  • Altschul, F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402.

    PubMed  Google Scholar 

  • Andréasson, E., Jørgensen, L. B., Höglund, A.-S., Rask, L. and Meijer, J. 2001. Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus. Plant Physiol. 127: 1750-1763.

    PubMed  Google Scholar 

  • Bailey, R. W. and Bourne, E. J. 1960. Color reagents given by sugars and diphenylamine-aniline spray reagents on paper chromatograms. J. Chromatogr. 4: 206-213.

    Google Scholar 

  • Babcock, G. D. and Esen, A. 1994. Substrate specificity of maize b-glucosidase. Plant Sci. 101: 31-39.

    Google Scholar 

  • Barrett, T., Suresh, C. G., Tolley, S. P., Dodson, E. J. and Hughes, M. A. 1995. The crystal structure of a cyanogenic bglucosidase from white sweet clover, a family 1 glycosyl hydrolase. Structure 3: 951-960.

    PubMed  Google Scholar 

  • Béguin, P. 1990. Molecular biology of cellulose degradation. Annu. Rev. Microbiol 44: 219-248.

    PubMed  Google Scholar 

  • Berrin, J. G., Czjzek, M., Kroon, P. A., McLauchlan, W. R., Puigserver, A., Williamson, G. and Juge, N. 2003. Substrate (aglycone) specificity of human cytosolic beta-glucosidase. Biochem. J. 373: 41-48.

    PubMed  Google Scholar 

  • Blanc, G., Hokamp, K. and Wolfe, K. H. 2003. A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res. 13: 137-144.

    PubMed  Google Scholar 

  • Bloor, S. J. and Abrahams, S. 2002. The structure of the major anthocyanin in Arabidopsis thaliana. Phytochemistry 59: 343-346.

    PubMed  Google Scholar 

  • Brown, J. W. S. and Simpson, C. G. 1998. Splice site selection in plant pre-mRNA splicing. Annu. Rev. Plant Physiol. Mol. Biol. 49: 77-95.

    Google Scholar 

  • Burmeister, W. P., Cottaz, S., Driguez, H., Iori, R., Palmieri, S. and Henrissat, B. 1997. The crystal structure of Sinapis alba myrosinase and a covalent glycosyl-enzyme intermediate provide insights into the substrate recognition and activesite machinery of an S-glycosidase. Structure 5: 663-675.

    PubMed  Google Scholar 

  • Burset, M., Seledtsov, I. A. and Solovyev, V. V. 2000. Analysis of canonical and non-canonical splice sites in mammalian genomes. Nucleic Acids Res. 28: 4364-4375.

    PubMed  Google Scholar 

  • Callard, D., Axelos, M. and Mazzolini, L. 1996. Novel molecular markers for late phases of the growth cycle of Arabidopsis thaliana cell-suspension cultures are expressed during organ senescence. Plant Physiol. 112: 705-715.

    PubMed  Google Scholar 

  • Chivasa, S., Ndimba, B. K., Simon, W. J., Robertson, D., Yu, X.-L., Knox, J. P., Bolwell, P. and Slabas, A. R. 2002. Proteomic analysis of the Arabidopsis thaliana cell wall. Electrophoresis 23: 1754-1765.

    PubMed  Google Scholar 

  • Conn, E. E. 1993. b-Glycosidases in plants. Substrate specificity. In: A. Esen (Ed. ) b-Glucosidases: Biochemistry and Molecular Biology, ACS Symposium Series 533. American Chemical Society, Washington, DC, pp. 15-26.

    Google Scholar 

  • Coutinho, P. M. and Henrissat, B. 1999. Carbohydrate-Active Enzymes server at URL: http://afmb. cnrs-mrs. fr/_cazy/ CAZY/index. html.

  • Cregg, J. M., Vedvick, T. S. and Raschke, W. C. 1993. Recent advances in the expression of foreign genes in Pichia pastoris. Biotechnology 11: 905-910.

    PubMed  Google Scholar 

  • Czjzek, M., Cicek, M., Zamboni, V., Bevan, D. R., Henrissat, B. and Esen, A. 2000. The mechanism of substrate (aglycone) specificity in b-glucosidases is revealed by crystal structures of mutant maize b-glucosidase-DIMBOA,-DIMBOAGlc, and-dhurrin complexes. Proc. Natl. Acad. Sci. USA 97: 13555-13560.

    PubMed  Google Scholar 

  • Dharmawardhana, D. P., Ellis, B. E. and Carlson, J. E. 1995. A b-glucosidase from lodgepole pine specific for the lignin precursor coniferin. Plant Physiol. 107: 331-339.

    PubMed  Google Scholar 

  • Dharmawardhana, D. P., Ellis, B. E. and Carlson, J. E. 1999. cDNA cloning and heterologous expression of coniferin bglucosidase. Plant Mol. Biol. 40: 365-372.

    PubMed  Google Scholar 

  • Esen, A. 1996. Zea mays beta-D-glucosidase (glu1) gene (GenBank Accession No. U44773). Direct submission.

  • Esen, A. and Stetler, D. A. 1993. Subcellular localization of maize b-glucosidase.Maize Genet. Coop. News Lett. 67: 19-20.

    Google Scholar 

  • Falk, A. and Rask, L. 1995. Expression of a zeatin-O-glucosidedegrading b-glucosidase in Brassica napus. Plant Physiol. 108: 1369-1377.

    PubMed  Google Scholar 

  • Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.

    Google Scholar 

  • Fowler, T. 1993. Deletion of the Trichoderma reesei b-glucosidase gene, bgl1. In: A. Esen (Ed. ) b-Glucosidases: Biochemistry and Molecular Biology, ACS Symposium Series 533. American Chemical Society, Washington, DC, pp. 56-65.

    Google Scholar 

  • Fujiki, Y., Yoshikawa, Y., Sato, T., Inada, N., Ito, M., Hishida, I. and Watanabe, A. 2001. Dark-inducible genes from Arabidopsis thaliana are associated with leaf senescence and repressed by sugars. Physiol. Plant. 111: 345-352.

    PubMed  Google Scholar 

  • Gallardo, K., Job, C., Groot, S. P. C., Puype, M., Demol, H., Vanderkerckhove, J. and Job, D. 2001. Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol. 126: 835-848

    PubMed  Google Scholar 

  • Gualberto, J. M., Schell, J. and Palme, K. 1998. Arabidopsis thaliana beta-glucosidase (GLUC) mRNA, complete cds (direct sequence submission to GenBank).

  • Haas, B. J., Volfovsky, N., Town, C. D., Troukhan, M., Alexandrov, N., Feldmann, K. A., Flavell, R. B., White, O. and Salzberg, S. L. 2002. Full-length messenger RNA sequences greatly improve genome annotation. Genome Biol. 3: research 00291-002912.

    Google Scholar 

  • Handford, M. G., Baldwin, T. C., Goubet, F., Prime, T. A., Miles, J., Yu, X. and Dupree, P. 2003. Localisation and characterisation of cell wall mannan polysaccharides in Arabidopsis thaliana. Planta 218: 27-36.

    PubMed  Google Scholar 

  • Hagemeier, J., Schneider, B., Oldham, N. J. and Hahlbrock, K. 2001. Accumulation of soluble and wall-bound indolic metabolites in Arabidopsis thaliana leaves infected with virulent and avirulent Pseudomonas syringae pathovar tomato strains. Proc. Natl. Acad. Sci. USA 98: 753-758.

    PubMed  Google Scholar 

  • Hartel, F. V. and Brandt, A. 2002. Characterization of a Brassica napus myrosinase expressed and secreted by Pichia pastoris. Protein Expr Purif. 24: 221-226.

    PubMed  Google Scholar 

  • Henrissat, B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280: 309-316.

    PubMed  Google Scholar 

  • Henrissat, B. and Davies, G. J. 1997. Structural and sequencebased classification of glycosyl hydrolases. Curr. Opin. Struct. Biol. 7: 637-644.

    PubMed  Google Scholar 

  • Higgins, D. R. and Cregg, J. M. 1999. Introduction to Pichia pastoris. In: D. R. Higgins and J. M. Cregg (Eds. ) Pichia Protocols, Methods in Molecular Biology 103, Humana Press, Towata, NJ, pp. 1-15.

    Google Scholar 

  • Hogge, L. R., Reed, D. W., Underhill, E. W. and Haughn, G. W. 1988. HPLC separation of glucosinolates from leaves and seeds of Arabidopsis thaliana and their identification using thermospray liquid chromatography-mass spectrometry. J. Chromatogr. Sci. 26: 551-556.

    Google Scholar 

  • Hösel, W. and Barz, W. 1975. b-Glucosidases from Cicer arietinum L. Purification and properties of isoflavone-7-Oglucoside-specific b-glucosidases. Eur. J. Biochem. 57: 607-616.

    PubMed  Google Scholar 

  • Hösel, W. and Nahrstedt, A. 1975. Spezifische Glucosidasen fuer das Cyanoglucosid Triglochinin: Reinigung und Charakterisierung von b-Glucosidasen aus Alocasia macrorrhiza Schott. Hoppe-Seyler's Z. Physiol. Chem. 356: 1265-1275.

    Google Scholar 

  • Hösel, W. and Todenhagen, R. 1980. Characterization of a bglucosidase from Glycine max which hydrolyses coniferin and syringin. Phytochemistry 19: 331-339.

    Google Scholar 

  • Hösel, W., Tober, I., Eklund, S. H. and Conn, E. E. 1987. Characterization of b-glucosidases with high specificity for 365 the cyanogenic glucoside dhurrin in Sorghum bicolor (L. ) Moench seedlings. Arch. Biochem. Biophys. 252: 152-162.

    PubMed  Google Scholar 

  • Initiative, A. G. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815.

    PubMed  Google Scholar 

  • Inoue, K. and Ebizuka, Y. 1996. Purification and characterization of a beta-glucosidase which converts furostanol glycosides to spirostanol glycosides from Costus speciosus. Adv. Exp. Med. Biol. 404: 57-69.

    PubMed  Google Scholar 

  • Inoue, K., Shibuya, M., Yamamoto, K. and Ebizuka, Y. 1996. Molecular cloning and bacterial expression of a cDNA encoding furostanol glycoside 26-O-beta-glucosidase of Costus speciosus. FEBS Lett. 389: 273-277.

    PubMed  Google Scholar 

  • Kosuge, T. and Conn, E. E. 1961. The metabolism of aromatic compounds in higher plants. III. The b-glucosides of o-coumaric, coumarinic, and melilotic acids. J. Biol. Chem. 236: 1617-1621.

    PubMed  Google Scholar 

  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.

    PubMed  Google Scholar 

  • Leah, R., Kigel J., Svendsen, I. and Mundy, J. 1995. Biochemical and molecular characterization of a barley seed bglucosidase. J. Biol. Chem. 270: 15789-15797.

    PubMed  Google Scholar 

  • Liddle, S., Keresztessy, Z., Hughes, J. and Hughes, M. A. 1998. A genomic cyanogenic beta-glucosidase gene from Cassava (Accession No. X94986). Plant Physiol. 117: 1526.

    Google Scholar 

  • Lim, E.-K., Li, Y., Parr, A., Jackson, R., Ashford, D. A. and Bowles, D. J. 2001a. Identification of glucosyltransferase genes involved in sinapate metabolism and lignin synthesis in Arabidopsis. J. Biol. Chem. 276: 4344-4349.

    PubMed  Google Scholar 

  • Lim, E.-K., Doucet, C. J., Li, Y., Elias, L., Worrall, D., Spencer, S. P., Ross, J. and Bowles, D. J. 2001b. The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates. J. Biol. Chem. 277: 586-592.

    PubMed  Google Scholar 

  • Malboobi, M. A, Tremblay, L. and Lefebvre, D. D. 1996. Identification and nucleotide sequences of cDNA clones of phosphate-starvation inducible beta-glucosidase genes of Brassicaceae (Accession nos. U72153 and U72154; Plant Gene Register PGR96-114). Plant Physiol. 112: 1399.

    Google Scholar 

  • Malboobi, M. A. and Lefebvre, D. D. 1997. A phosphatestarvation inducible beta-glucosidase gene (psr3. 2) isolated from Arabidopsis thaliana is a member of a distinct subfamily of the BGA family. Plant Mol. Biol. 34: 57-68.

    PubMed  Google Scholar 

  • Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K. A., Dangl, J. L. and Dietrich, R. A. 2000. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat. Genet. 26: 403-410.

    PubMed  Google Scholar 

  • Matsushima, R., Kondo, M., Nishimura, M. and Hara-Nishimura, I. 2003a. A novel ER-derived compartment, the ER body, selectively accumulates a b-glucosidase with an ER-retention signal in Arabidopsis. Plant J. 33: 493-502.

    PubMed  Google Scholar 

  • Matsushima, R., Hayashi, Y., Yamada, K., Shimada, T., Nishimura, M. and Hara-Nishimura, I. 2003b. The ER body, a novel endoplasmic reticulum-derived structure in Arabidopsis. Plant Cell Physiol. 44: 661-666.

    PubMed  Google Scholar 

  • McMahon, J. M. and Sayre, R. T. 1997. Genomic sequence for a linamarase gene from cassava (Manihot esculenta Crantz) (GenBank Accession No. U95298). Direct submission.

  • Mo, B. and Bewley, J. D. 2002. b-Mannosidase (EC 3. 2. 1. 25) activity during and following germination of tomato (Lycopersicon esculentum Mill. ) seeds. Purification, cloning and characterization. Planta 215: 141-152.

    PubMed  Google Scholar 

  • Møller, B. L. and Poulton, J. E. 1993. Cyanogenic glycosides. In: P. J. Lea (Ed. ) Methods in Plant Biochemistry. Vol. 9, Enzymes of secondary metabolism, Academic Press, New York, pp. 183-207.

    Google Scholar 

  • Mount, S. M. 1982. A catalogue of splice junction sequences. Nucleic Acids Res. 10: 459-472.

    PubMed  Google Scholar 

  • Niemeyer, H. M. 1988. Hydroxamic acids (4-hydroxy-1, 4-benzoxazin-3-ones), defense chemicals in the Gramineae. Phytochemistry 27: 3349-3358.

    Google Scholar 

  • Nikus, J., Esen, A., and Jonsson, L. M. V. 2003. Cloning of a plastidic rye (Secale cereale) b-glucosidase cDNA and its expression in Escherichia coli. Physiol. Plant. 118: 337-345.

    Google Scholar 

  • Nisius, A. 1988. The stromacentre in Avena plastids: an aggregation of b-glucosidase responsible for the activation of oat-leaf saponins. Planta 173: 474-481.

    Google Scholar 

  • Nitz, I., Berkefeld, H., Puzio, P. S. and Grundler, F. M. W. 2001. Pyk10, a seedling and root specific gene and promoter from Arabidopsis thaliana. Plant Sci. 161: 337-346.

    PubMed  Google Scholar 

  • Piao, H. L. and Hwang, I. 2000. A transgenic Arabidopsis plant overexpressing an ER localized b-glucosidase homolog that is transcriptionally suppressed by NaCl is hypersensitive to NaCl stress (direct sequence submission to GenBank).

  • Poulton, J. E. 1990. Cyanogenesis in plants. Plant Physiol. 94: 401-405.

    Google Scholar 

  • Rask, L., Andréasson, E., Ekbom, B., Eriksson, S., Pontoppidan, B. and Meijer, J. 2000. Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol. Biol. 42: 93-113.

    PubMed  Google Scholar 

  • Raychaudhuri, A. and Tipton, P. A. 2002. Cloning and expression of the gene for soybean hydroxyisourate hydrolase. Localization and implications for function and mechanism. Plant Physiol. 130: 2061-2068.

    PubMed  Google Scholar 

  • Raychaudhuri, A. and Tipton, P. A. 2003. A familiar motif in a new context: the catalytic mechanism of hydroxyisourate hydrolase. Biochemistry 42: 6848-6852.

    PubMed  Google Scholar 

  • Reichelt, M., Brown, P. D., Schneider, B., Oldham, N. J., Stauber, E., Tokuhisa, J., Kliebenstein, D. J., Mitchell-Olds, T. and Gershenzon, J. 2002. Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana. Phytochemistry 59: 663-671.

    PubMed  Google Scholar 

  • Ross, J., Li, Y., Lim, E.-K. and Bowles, D. J. 2001. Higher plant glycosyltransferases. Genome Biol. 2: 1-6.

    Google Scholar 

  • Rubinelli, P., Hu, Y. and Ma, H. 1998. Identification, sequence analysis and expression studies of novel anther-specific genes of Arabidopsis thaliana. Plant Mol. Biol. 37: 607-619.

    PubMed  Google Scholar 

  • Ryan, K. G., Swinny, E. E, Winefield, C. and Markham, K. R. 2001. Flavonoids and UV photoprotection in Arabidopsis mutants. Z. Naturforsch. 56c: 745-754.

    Google Scholar 

  • Schmidt, K. P., Burrows, P. R., Davies, K. G., Kammerloher. W., Schaeffner, A. R., Buck, F., Cai, D. and Grundler, F. M. W. 1995. A root specific myrosinase in Arabidopsis responding to cyst nematode infection (direct sequence submission to GenBank).

  • Sharp, P. A. 1981. Speculations on RNA splicing. Cell 23: 643-646.

    PubMed  Google Scholar 

  • Simillion, C., Vandepoele, K., Van Montagu, M. C., Zabeau, M. and Van de Peer, Y. 2002. The hidden duplication past of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 99: 13627-13632.

    PubMed  Google Scholar 

  • Snyder, M. and Gerstein, M. 2003. Defining genes in the genomics era. Science 300: 258-260.

    PubMed  Google Scholar 

  • Stotz, H. U., Pittendrigh, B. R., Kroymann, J., Weniger, K., Fritsche, J., Bauke, A. and Mitchell-Olds, T. 2000. Induced plant defense responses against chewing insects. Ethylene signaling reduces resistance of Arabidopsis against Egyptian cotton worm but not diamondback moth. Plant Physiol. 124: 1007-1017.

    PubMed  Google Scholar 

  • Thayer, S. S. and Conn, E. E. 1981. Subcellular localization of dhurrin b-glucosidase and hydroxynitrile lyase in the mesophyll cells of Sorghum leaf blades. Plant Physiol. 67: 617-622.

    Google Scholar 

  • Thorlby, G., Veale, E., Butcher, K. and Warren, G. J. 1999. Map positions of SFR genes in relation to other freezingrelated genes of Arabidopsis thaliana. Plant J. 17: 445-452.

    PubMed  Google Scholar 

  • Thorlby, G. J. and Warren, G. J. 2002. The sfr2 gene, required for freezing tolerance in Arabidopsis thaliana, encodes a putative beta-glycosidase (direct sequence submission to GenBank).

  • Veit, M. and Pauli, G. F. 1999. Major flavonoids from Arabidopsis thaliana leaves. J Nat. Prod. 62: 1301-1303.

    PubMed  Google Scholar 

  • Verdoucq, L., Moriniere, J., Bevan, D. R., Esen, A., Vasella, A., Henrissat, B. and Czjzek, M. 2004. Structural determinants of substrate specificity in family 1 beta-glucosidases: novel insights from the crystal structure of sorghum dhurrinase-1, a plant beta-glucosidase with strict specificity, in complex with its natural substrate. J. Biol. Chem. (in press).

  • Vision, T. J., Brown, D. G. and Tanksley, S. D. 2000. The origins of genomic duplications in Arabidopsis. Science 290: 2114-2117.

    PubMed  Google Scholar 

  • Xue, J. and Rask, L. 1995. The unusual 5' splicing border GC is used in myrosinase genes of the Brassicaceae. Plant Mol. Biol. 29: 167-171.

    PubMed  Google Scholar 

  • Xue, J., Jorgensen, M., Pihlgren, U. and Rask, L. 1995. The myrosinase gene family in Arabidopsis thaliana: gene organization, expression and evolution. Plant Mol. Biol. 27: 911-922.

    PubMed  Google Scholar 

  • Yoshida, S., Ito, M., Nishida, I. and Watanabe, A. 2001. Isolation and RNA gel blot analysis of genes that could serve as potential molecular markers for leaf senescence in Arabidopsis thaliana. Plant Cell Physiol. 42: 170-178.

    PubMed  Google Scholar 

  • Zhang, J., Pontoppidan, B., Xue, J., Rask, L. and Meijer, J. 2002. The third myrosinase gene TGG3 in Arabidopsis thaliana is a pseudogene specifically expressed in stamen and petal. Physiol. Plant. 115: 25-34.

    PubMed  Google Scholar 

  • Zhong, R. and Ye, Z.-H. 2003. The SAC domain-containing protein gene family in Arabidopsis. Plant Physiol. 132: 544-555.

    PubMed  Google Scholar 

  • Zhou, J., Hartmann, S., Shepherd, B. K. and Poulton, J. E. 2002. Investigation of the microheterogeneity and aglycone speci-ficity-conferring residues of black cherry prunasin hydrolases. Plant Physiol. 129: 1252-1264.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Z., Escamilla-Treviño, L., Zeng, L. et al. Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1. Plant Mol Biol 55, 343–367 (2004). https://doi.org/10.1007/s11103-004-0790-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-004-0790-1

Navigation