Skip to main content
Log in

Defining subdomains of the K domain important for protein–protein interactions of plant MADS proteins

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Alvarez-Buylla, E.R., Pelaz, S., Liljegren, S.J., Gold, S.E., Burgeff, C., Ditta, G.S., de Pouplana, L.R., Martinez-Castilla, L. and Yanofsky, M.F. 2000. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc. Natl. Acad. Sci. USA 97: 5328–5333.

    Google Scholar 

  • Bowman, J.L., Smyth, D.R. and Meyerowitz, E.M. 1989. Genes directing flower development in Arabidopsis. Plant Cell 1: 37–52.

    Google Scholar 

  • Bowman, J.L., Smyth, D.R. and Meyerowitz, E.M. 1991. Genetic interactions among floral homeotic genes of Arabidopsis. Development 112: 1–20.

    Google Scholar 

  • Cho, S., Jang, S., Chae, S., Chung, K.M., Moon, Y.H., An, G. and Jang, S.K. 1999. Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain. Plant Mol. Biol. 40: 419–429.

    Google Scholar 

  • Davies, B., Egea-Cortines, M., de Andrade Silva, E., Saedler, H. and Sommer, H. 1996. Multiple interactions amongst floral homeotic MADS box proteins. EMBO J. 16: 4330–4343.

    Google Scholar 

  • Egea-Cortines, M., Saedler, H. and Sommer, H. 1999. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS, and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J. 18: 5370–5379.

    Google Scholar 

  • Fan, H.-Y., Hu, Y., Tudor, M. and Ma, H. 1997. Specific interactions between K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins. Plant J. 12: 999–1010.

    Google Scholar 

  • Goto, K. and Meyerowitz, E.M. 1994. Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8: 1548–1560.

    Google Scholar 

  • Hill, T.A., Day, C.D., Zondlo, S.C., Thackeray, A. and Irish, V.F. 1998. Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3. Development 125: 1711–1721.

    Google Scholar 

  • Honma, T. and Goto, K. 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409: 525–529.

    Google Scholar 

  • Jack, T., Brockman, L.L. and Meyerowitz, E.M. 1992. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68: 683–697.

    Google Scholar 

  • Jack, T., Fox, G.L. and Meyerowitz, E.M. 1994. Arabidopsis homeotic gene APETALA3 ectopic expression: Transcriptional and post-transcriptional regulation determine floral organ identity. Cell 76: 703–716.

    Google Scholar 

  • James, P., Halladay, J. and Craig, E.A. 1996. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144: 1425–1436.

    Google Scholar 

  • Kang, H.G., Jang, S., Chung, J.E., Cho, Y.G. and An, G. 1997. Characterization of two rice MADS box genes that control flowering time. Mol. Cells 7: 559–566.

    Google Scholar 

  • Kieffer, M. and Davies, B. 2001. Developmental programmes in floral organ formation. Sem. Cell. Dev. Biol. 12: 373–380.

    Google Scholar 

  • Kohler, C., Hennig, L., Spillane, C., Pien, S., Gruissem, W. and Grossniklaus, U. (2003). The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Genes Dev. 17: 1540–1553.

    Google Scholar 

  • Krizek, B.A. and Meyerowitz, E.M. 1996a. The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development 112: 11–22.

    Google Scholar 

  • Krizek, B.A. and Meyerowitz, E.M. 1996b. Mapping the protein regions responsible for the functional specificities of the Arabidopsis MADS domain organ-idenity proteins. Proc. Natl. Acad. Sci. USA 93: 4063–4070.

    Google Scholar 

  • Lamb, R.S. and Irish, V.F. 2003. Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages. Proc. Natl. Acad. Sci. USA 100: 6558–6563.

    Google Scholar 

  • Lim, J., Moon, Y.H., An, G. and Jang, S.K. 2000. Two rice MADS domain proteins interact with OsMADS1. Plant Mol. Biol. 44: 513–527.

    Google Scholar 

  • Ma, H., Yanofsky, M.F. and Meyerowitz, E.M. 1991. AGL1- AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev. 5: 484–495.

    Google Scholar 

  • Mandel, M.A. and Yanofsky, M.F. 1998. The Arabidopsis AGL9 MADS-box gene is expressed in young flower primordia. Sex Plant Reprod. 11: 22–28.

    Google Scholar 

  • McGonigle, B., Bouhidel, K. and Irish, V.F. 1996. Nuclear localization of the Arabidopsis APETALA3 and PISTILLATA homeotic gene products depends on their simultaneous expression. Genes Dev. 10: 1812–1821.

    Google Scholar 

  • Moon, Y.-H., Jung, J.-Y., Kang, H.-G. and An, G. 1999a. Identification of a rice APETALA3 homologue by yeast twohybrid screening. Plant Mol. Biol. 40: 167–177.

    Google Scholar 

  • Moon, Y.-W., Kang, H.-G., Jung, J.-Y., Jeon, J.-S., Sung, S.-K., and An, G. 1999b. Determination of the motif responsible for interaction between the rice APETALA1/ AGAMOUS-LIKE9 family proteins using a yeast two-hybrid system. Plant Physiol. 120: 1193–1203.

    Google Scholar 

  • Parenicova, L., de Folter, S., Kieffer, M., Horner, D.S., Favalli, C., Kater, M.M., Davies, B., Angenent, G.C. and Colombo, L. 2003. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: New openings to the MADS world. Plant Cell 15: 1538–1551.

    Google Scholar 

  • Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E. and Yanofsky, M.F. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405: 200–203.

    Google Scholar 

  • Pelaz, S., Gustafson-Brown, C., Kohalmi, S.E., Crosby, W.L., and Yanofsky, M.F. 2001a. APETALA1 and SEPALLATA3 interact to promote flower development. Plant J. 26: 385–394.

    Google Scholar 

  • Pelaz, S., Tapia-Lopez, R., Alvarez-Buylla, E.R. and Yanofsky, M.F. 2006. Conversion of leaves into petals in Arabidopsis. Curr. Biol. 11: 182–184.

    Google Scholar 

  • Riechmann, J.L., Krizek, B.A. and Meyerowitz, E.M. 1996. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci. USA 93: 4793–4798.

    Google Scholar 

  • Riechmann, J.L. and Meyerowitz, E.M. 1997a. Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, PI, and AG is independent of their DNA-binding specificity. Mol. Biol. Cell 8: 1243–1259.

    Google Scholar 

  • Riechmann, J.L. and Meyerowitz, E.M. 1997b. MADS domain proteins in plant development. Biol. Chem. 378: 1079–1101.

    Google Scholar 

  • Tzeng, T.Y., Liu, H.-C. and Yang, C.-H. 2003. The C-terminal sequence of LMADS1 is essential for the formation of homodimers for B function proteins. J. Biol. Chem. 279: 10747–10755.

    Google Scholar 

  • Yang, Y., Fanning, L. and Jack, T. 2003a. The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins APETALA3 and PISTILLATA. Plant J. 33: 47–59.

    Google Scholar 

  • Yang, Y., Xiang, H. and Jack, T. 2003b. pistillata-5, an Arabidopsis B class mutant with strong defects in petal, but not stamen development. Plant J. 33: 177–188.

    Google Scholar 

  • Zachgo, S., de Andrade Silva, E., Motte, P., Tröbner, W., Saedler, H. and Schwarz-Sommer, Z. 1995. Functional analysis of the Antirrhinum floral homeotic DEFICIENS gene in vivo and in vitro by using a temperature-sensitive mutant. Development 121: 2861–2875.

    Google Scholar 

  • Zhang, H. and Forde, B.G. 1998. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279: 407–409.

    Google Scholar 

  • Zik, M. and Irish, V.F. 2003. Flower development: Initiation, differentiation, and diversification. Ann. Rev. Cell. Dev. Biol. 19: 119–140.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Jack, T. Defining subdomains of the K domain important for protein–protein interactions of plant MADS proteins. Plant Mol Biol 55, 45–59 (2004). https://doi.org/10.1007/s11103-004-0416-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-004-0416-7

Navigation