Skip to main content

Advertisement

Log in

Current status of artificial intelligence technologies in pituitary adenoma surgery: a scoping review

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Purpose

Pituitary adenoma surgery is a complex procedure due to critical adjacent neurovascular structures, variations in size and extensions of the lesions, and potential hormonal imbalances. The integration of artificial intelligence (AI) and machine learning (ML) has demonstrated considerable potential in assisting neurosurgeons in decision-making, optimizing surgical outcomes, and providing real-time feedback. This scoping review comprehensively summarizes the current status of AI/ML technologies in pituitary adenoma surgery, highlighting their strengths and limitations.

Methods

PubMed, Embase, Web of Science, and Scopus were searched following the PRISMA-ScR guidelines. Studies discussing the use of AI/ML in pituitary adenoma surgery were included. Eligible studies were grouped to analyze the different outcomes of interest of current AI/ML technologies.

Results

Among the 2438 identified articles, 44 studies met the inclusion criteria, with a total of seventeen different algorithms utilized across all studies. Studies were divided into two groups based on their input type: clinicopathological and imaging input. The four main outcome variables evaluated in the studies included: outcome (remission, recurrence or progression, gross-total resection, vision improvement, and hormonal recovery), complications (CSF leak, readmission, hyponatremia, and hypopituitarism), cost, and adenoma-related factors (aggressiveness, consistency, and Ki-67 labeling) prediction. Three studies focusing on workflow analysis and real-time navigation were discussed separately.

Conclusion

AI/ML modeling holds promise for improving pituitary adenoma surgery by enhancing preoperative planning and optimizing surgical strategies. However, addressing challenges such as algorithm selection, performance evaluation, data heterogeneity, and ethics is essential to establish robust and reliable ML models that can revolutionize neurosurgical practice and benefit patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All authors confirm the appropriateness of all dataset and software used for supporting the conclusion.

Code availability

Not applicable.

Data availability

Data are depicted in the tables.

References

  1. Fang CH, Agarwal V, Liu JK, Eloy JA (2022) Overview of pituitary surgery. Otolaryngol Clin North Am 55(2):205–221

    Article  PubMed  Google Scholar 

  2. Wilkinson J, Arnold KF, Murray EJ, van Smeden M, Carr K, Sippy R et al (2020) Time to reality check the promises of machine learning-powered precision medicine. Lancet Digit Health 2(12):e677–e80

    Article  PubMed  PubMed Central  Google Scholar 

  3. Senders JT, Staples PC, Karhade AV, Zaki MM, Gormley WB, Broekman MLD et al (2018) Machine learning and neurosurgical outcome prediction: a systematic review. World Neurosurg 109:476–486

    Article  PubMed  Google Scholar 

  4. Senders JT, Arnaout O, Karhade AV, Dasenbrock HH, Gormley WB, Broekman ML et al (2018) Natural and artificial intelligence in neurosurgery: a systematic review. Neurosurgery 83(2):181–192

    Article  PubMed  Google Scholar 

  5. Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D et al (2018) PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med 169(7):467–473

    Article  PubMed  Google Scholar 

  6. Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ, Reitsma JB et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155(8):529–536

    Article  PubMed  Google Scholar 

  7. Fan Y, Liu Z, Hou B, Li L, Liu X, Liu Z et al (2019) Development and validation of an MRI-based radiomic signature for the preoperative prediction of treatment response in patients with invasive functional pituitary adenoma. Eur J Radiol 121:108647

    Article  PubMed  Google Scholar 

  8. Dai C, Fan Y, Li Y, Bao X, Li Y, Su M et al (2020) Development and interpretation of multiple machine learning models for predicting postoperative delayed remission of acromegaly patients during long-term follow-up. Front Endocrinol 11:643

    Article  CAS  Google Scholar 

  9. Fan Y, Li Y, Bao X, Zhu H, Lu L, Yao Y et al (2021) Development of machine learning models for predicting postoperative delayed remission in patients with Cushing’s disease. J Clin Endocrinol Metab 106(1):e217–e31

    Article  PubMed  Google Scholar 

  10. Zoli M, Staartjes VE, Guaraldi F, Friso F, Rustici A, Asioli S et al (2020) Machine learning-based prediction of outcomes of the endoscopic endonasal approach in Cushing disease: is the future coming? NeuroSurg Focus 48(6):E5

    Article  PubMed  Google Scholar 

  11. Sulu C, Bektaş AB, Şahin S, Durcan E, Kara Z, Demir AN et al (2022) Machine learning as a clinical decision support tool for patients with acromegaly. Pituitary 25(3):486–495

    Article  CAS  PubMed  Google Scholar 

  12. Fan Y, Li Y, Li Y, Feng S, Bao X, Feng M et al (2020) Development and assessment of machine learning algorithms for predicting remission after transsphenoidal surgery among patients with acromegaly. Endocrine 67(2):412–422

    Article  CAS  PubMed  Google Scholar 

  13. Zhang W, Sun M, Fan Y, Wang H, Feng M, Zhou S et al (2021) Machine learning in preoperative prediction of postoperative immediate remission of histology-positive Cushing’s disease. Front Endocrinol 12:635795

    Article  Google Scholar 

  14. Shahrestani S, Cardinal T, Micko A, Strickland BA, Pangal DJ, Kugener G et al (2021) Neural network modeling for prediction of recurrence, progression, and hormonal non-remission in patients following resection of functional pituitary adenomas. Pituitary 24(4):523–529

    Article  CAS  PubMed  Google Scholar 

  15. Qiao N, Shen M, He W, He M, Zhang Z, Ye H et al (2021) Machine learning in predicting early remission in patients after surgical treatment of acromegaly: a multicenter study. Pituitary 24(1):53–61

    Article  PubMed  Google Scholar 

  16. Zanier O, Zoli M, Staartjes VE, Guaraldi F, Asioli S, Rustici A et al (2022) Machine learning-based clinical outcome prediction in surgery for acromegaly. Endocrine 75(2):508–515

    Article  CAS  PubMed  Google Scholar 

  17. Huber M, Luedi MM, Schubert GA, Musahl C, Tortora A, Frey J et al (2022) Machine learning for outcome prediction in first-line surgery of prolactinomas. Front Endocrinol 13:810219

    Article  Google Scholar 

  18. Zhang Y, Luo Y, Kong X, Wan T, Long Y, Ma J (2021) A preoperative MRI-based radiomics-clinicopathological classifier to predict the recurrence of pituitary macroadenoma within 5 years. Front Neurol 12:780628

    Article  PubMed  Google Scholar 

  19. Machado LF, Elias PCL, Moreira AC, Dos Santos AC, Murta Junior LO (2020) MRI radiomics for the prediction of recurrence in patients with clinically non-functioning pituitary macroadenomas. Comput Biol Med 124:103966

    Article  PubMed  Google Scholar 

  20. Chen YJ, Hsieh HP, Hung KC, Shih YJ, Lim SW, Kuo YT et al (2022) Deep learning for prediction of progression and recurrence in nonfunctioning pituitary macroadenomas: combination of clinical and MRI features. Front Oncol 12:813806

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu Y, Liu X, Hong X, Liu P, Bao X, Yao Y et al (2019) Prediction of recurrence after transsphenoidal surgery for Cushing’s disease: the use of machine learning algorithms. Neuroendocrinology 108(3):201–210

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Y, Ko CC, Chen JH, Chang KT, Chen TY, Lim SW et al (2020) Radiomics approach for prediction of recurrence in non-functioning pituitary macroadenomas. Front Oncol 10:590083

    Article  PubMed  PubMed Central  Google Scholar 

  23. Staartjes VE, Serra C, Muscas G, Maldaner N, Akeret K, van Niftrik CHB et al (2018) Utility of deep neural networks in predicting gross-total resection after transsphenoidal surgery for pituitary adenoma: a pilot study. NeuroSurg Focus 45(5):E12

    Article  PubMed  Google Scholar 

  24. Fang Y, Wang H, Feng M, Zhang W, Cao L, Ding C et al (2021) Machine-learning prediction of postoperative pituitary hormonal outcomes in nonfunctioning pituitary adenomas: a multicenter study. Front Endocrinol 12:748725

    Article  Google Scholar 

  25. Zhang Y, Chen C, Huang W, Cheng Y, Teng Y, Zhang L et al (2021) Machine learning-based radiomics of the optic chiasm predict visual outcome following pituitary adenoma surgery. J Personalized Med 11(10):991

    Article  Google Scholar 

  26. Qiao N, Ma Y, Chen X, Ye Z, Ye H, Zhang Z et al (2022) Machine learning prediction of visual outcome after surgical decompression of sellar region tumors. J Personalized Med 12(2):152

    Article  Google Scholar 

  27. Hollon TC, Parikh A, Pandian B, Tarpeh J, Orringer DA, Barkan AL et al (2018) A machine learning approach to predict early outcomes after pituitary adenoma surgery. NeuroSurg Focus 45(5):E8

    Article  PubMed  Google Scholar 

  28. Crabb BT, Hamrick F, Campbell JM, Vignolles-Jeong J, Magill ST, Prevedello DM et al (2022) Machine learning-based analysis and prediction of unplanned 30-day readmissions after pituitary adenoma resection: a multi-institutional retrospective study with external validation. Neurosurgery 91(2):263–71

    Article  PubMed  Google Scholar 

  29. Voglis S, van Niftrik CHB, Staartjes VE, Brandi G, Tschopp O, Regli L et al (2020) Feasibility of machine learning based predictive modelling of postoperative hyponatremia after pituitary surgery. Pituitary 23(5):543–551

    Article  PubMed  Google Scholar 

  30. Muhlestein WE, Akagi DS, McManus AR, Chambless LB (2018) Machine learning ensemble models predict total charges and drivers of cost for transsphenoidal surgery for pituitary tumor. J Neurosurg 131(2):507–516

    Article  PubMed  Google Scholar 

  31. Mattogno PP, Caccavella VM, Giordano M, D’Alessandris QG, Chiloiro S, Tariciotti L et al (2022) Interpretable machine learning-based prediction of Intraoperative Cerebrospinal Fluid Leakage in Endoscopic Transsphenoidal Pituitary Surgery: a pilot study. J Neurol Surg Part B Skull base 83(5):485–495

    Article  Google Scholar 

  32. Villalonga JF, Solari D, Cuocolo R, De Lucia V, Ugga L, Gragnaniello C et al (2022) Clinical application of the sellar barrier’s concept for predicting intraoperative CSF leak in endoscopic endonasal Surgery for pituitary adenomas with a machine learning analysis. Front Surg 9:934721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tariciotti L, Fiore G, Carrabba G, Bertani GA, Schisano L, Borsa S et al (2021) A supervised machine learning algorithm predicts intraoperative CSF leak in endoscopic transsphenoidal surgery for pituitary adenomas: model development and prospective validation. J Neurosurg Sci. https://doi.org/10.23736/s0390-5616.21.05295-4

    Article  PubMed  Google Scholar 

  34. Staartjes VE, Zattra CM, Akeret K, Maldaner N, Muscas G, van Bas CH et al (2019) Neural network-based identification of patients at high risk for intraoperative cerebrospinal fluid leaks in endoscopic pituitary surgery. J Neurosurg 133:1–7

    Google Scholar 

  35. Niu J, Zhang S, Ma S, Diao J, Zhou W, Tian J et al (2019) Preoperative prediction of cavernous sinus invasion by pituitary adenomas using a radiomics method based on magnetic resonance images. Eur Radiol 29(3):1625–1634

    Article  PubMed  Google Scholar 

  36. Fang Y, Wang H, Feng M, Chen H, Zhang W, Wei L et al (2022) Application of convolutional neural network in the diagnosis of cavernous sinus invasion in pituitary adenoma. Front Oncol 12:835047

    Article  PubMed  PubMed Central  Google Scholar 

  37. Feng T, Fang Y, Pei Z, Li Z, Chen H, Hou P et al (2022) A convolutional neural network model for detecting sellar floor destruction of pituitary adenoma on magnetic resonance imaging scans. Front NeuroSci 16:900519

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang C, Heng X, Neng W, Chen H, Sun A, Li J et al (2022) Prediction of high infiltration levels in pituitary adenoma using MRI-based radiomics and machine learning. Chin Neurosurgical J 8(1):21

    Article  CAS  Google Scholar 

  39. Zeynalova A, Kocak B, Durmaz ES, Comunoglu N, Ozcan K, Ozcan G et al (2019) Preoperative evaluation of tumour consistency in pituitary macroadenomas: a machine learning-based histogram analysis on conventional T2-weighted MRI. Neuroradiology 61(7):767–774

    Article  PubMed  Google Scholar 

  40. Cuocolo R, Ugga L, Solari D, Corvino S, D’Amico A, Russo D et al (2020) Prediction of pituitary adenoma surgical consistency: radiomic data mining and machine learning on T2-weighted MRI. Neuroradiology 62(12):1649–1656

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhu H, Fang Q, Huang Y, Xu K (2020) Semi-supervised method for image texture classification of pituitary tumors via CycleGAN and optimized feature extraction. BMC Med Inf Decis Mak 20(1):215

    Article  Google Scholar 

  42. Wan T, Wu C, Meng M, Liu T, Li C, Ma J et al (2022) Radiomic features on multiparametric MRI for preoperative evaluation of pituitary macroadenomas consistency: preliminary findings. J Magn Reson Imaging: JMRI 55(5):1491–1503

    Article  PubMed  Google Scholar 

  43. Ugga L, Cuocolo R, Solari D, Guadagno E, D’Amico A, Somma T et al (2019) Prediction of high proliferative index in pituitary macroadenomas using MRI-based radiomics and machine learning. Neuroradiology 61(12):1365–1373

    Article  PubMed  Google Scholar 

  44. Shu XJ, Chang H, Wang Q, Chen WG, Zhao K, Li BY et al (2022) Deep learning model-based approach for preoperative prediction of Ki67 labeling index status in a noninvasive way using magnetic resonance images: a single-center study. Clin Neurol Neurosurg 219:107301

    Article  PubMed  Google Scholar 

  45. Zhang S, Song G, Zang Y, Jia J, Wang C, Li C et al (2018) Non-invasive radiomics approach potentially predicts non-functioning pituitary adenomas subtypes before surgery. Eur Radiol 28(9):3692–3701

    Article  PubMed  Google Scholar 

  46. Peng A, Dai H, Duan H, Chen Y, Huang J, Zhou L et al (2020) A machine learning model to precisely immunohistochemically classify pituitary adenoma subtypes with radiomics based on preoperative magnetic resonance imaging. Eur J Radiol 125:108892

    Article  PubMed  Google Scholar 

  47. Li H, Zhao Q, Zhang Y, Sai K, Xu L, Mou Y et al (2021) Image-driven classification of functioning and nonfunctioning pituitary adenoma by deep convolutional neural networks. Comput Struct Biotechnol J 19:3077–3086

    Article  PubMed  PubMed Central  Google Scholar 

  48. Neuner C, Coras R, Blümcke I, Popp A, Schlaffer SM, Wirries A et al (2022) A whole-slide image managing library based on fastai for deep learning in the context of histopathology. Two Use-Cases Explained 12(1):13

    CAS  Google Scholar 

  49. Baysal B, Eser MB, Dogan MB, Kursun MA (2022) Multivariable diagnostic prediction model to detect hormone secretion profile from T2W MRI radiomics with artificial neural networks in pituitary adenomas. Medeniyet Med J 37(1):36–43

    Google Scholar 

  50. Rui W, Qiao N, Wu Y, Zhang Y, Aili A, Zhang Z et al (2022) Radiomics analysis allows for precise prediction of silent corticotroph adenoma among non-functioning pituitary adenomas. Eur Radiol 32(3):1570–1578

    Article  PubMed  Google Scholar 

  51. Foster KR, Koprowski R, Skufca JD (2014) Machine learning, medical diagnosis, and biomedical engineering research—commentary. Biomed Eng Online 13:94

    Article  PubMed  PubMed Central  Google Scholar 

  52. Subramanian J, Simon R (2013) Overfitting in prediction models—is it a problem only in high. Contemp Clin Trials 36(2):636–641

    Article  PubMed  Google Scholar 

  53. Song H-S, Yoon H-S, Lee S, Hong C-K, Yi B-JJAS (2019) Surgical navigation system for transsphenoidal pituitary surgery applying U-net-based automatic segmentation and bendable devices. Appl Sci 9(24):5540

    Article  CAS  Google Scholar 

  54. Staartjes VE, Volokitin A, Regli L, Konukoglu E, Serra CJON (2021) Machine vision for real-time intraoperative anatomic guidance: a proof-of-concept study in endoscopic pituitary surgery. Oper Neurosurg 21(4):242–247

    Article  Google Scholar 

  55. Khan DZ, Luengo I, Barbarisi S, Addis C, Culshaw L, Dorward NL et al (2021) Automated operative workflow analysis of endoscopic pituitary surgery using machine learning: development and preclinical evaluation (IDEAL stage 0). J Neurosurg 137:1–8

    Google Scholar 

Download references

Acknowledgements

None.

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The study was conceptualized and supervised by AAC-G. and PP Material preparation, data collection and analysis were performed by SFM, YD, AP-R, GSK, CP, TU, MZA, CM, MN, AD-B, MT-H, and AT. The first draft of the manuscript was written by SFM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Paolo Palmisciano.

Ethics declarations

Conflicts of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 424.4 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maroufi, S.F., Doğruel, Y., Pour-Rashidi, A. et al. Current status of artificial intelligence technologies in pituitary adenoma surgery: a scoping review. Pituitary 27, 91–128 (2024). https://doi.org/10.1007/s11102-023-01369-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-023-01369-6

Keywords

Navigation