Skip to main content

Advertisement

Log in

An update on, and genetics of refractory adenomas of childhood

  • Review
  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Pituitary adenomas in childhood tend to be more frequently due to germline genetic changes and are often diagnosed at late stages due to delayed recognition by pediatricians and other caretakers who are not familiar with this rare disease in childhood. As a result, often, pediatric pituitary adenomas are aggressive or remain refractory to treatment. In this review, we discuss germline genetic defects that account for the most common pediatric pituitary adenomas that are refractory to treatment. We also discuss some somatic genetic events, such as chromosomal copy number changes that characterize some of the most aggressive pituitary adenomas in childhood that end up being refractory to treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Non-applicable.

References

  1. Raappana A, Koivukangas J, Ebeling T, Pirila T (2010) Incidence of pituitary adenomas in Northern Finland in 1992–2007. J Clin Endocrinol Metab 95:4268–4275. https://doi.org/10.1210/jc.2010-0537

    Article  CAS  PubMed  Google Scholar 

  2. Ezzat S et al (2004) The prevalence of pituitary adenomas: a systematic review. Cancer 101:613–619. https://doi.org/10.1002/cncr.20412

    Article  PubMed  Google Scholar 

  3. Agustsson TT et al (2015) The epidemiology of pituitary adenomas in Iceland, 1955–2012: a nationwide population-based study. Eur J Endocrinol 173:655–664. https://doi.org/10.1530/EJE-15-0189

    Article  CAS  PubMed  Google Scholar 

  4. Daly AF et al (2006) High prevalence of pituitary adenomas: a cross-sectional study in the province of Liege, Belgium. J Clin Endocrinol Metab 91:4769–4775. https://doi.org/10.1210/jc.2006-1668

    Article  CAS  PubMed  Google Scholar 

  5. Keil MF, Stratakis CA (2008) Pituitary tumors in childhood: update of diagnosis, treatment and molecular genetics. Expert Rev Neurother 8:563–574. https://doi.org/10.1586/14737175.8.4.563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yoo F, Kuan EC, Heaney AP, Bergsneider M, Wang MB (2018) Corticotrophic pituitary carcinoma with cervical metastases: case series and literature review. Pituitary 21:290–301. https://doi.org/10.1007/s11102-018-0872-8

    Article  CAS  PubMed  Google Scholar 

  7. WHO (2017) Classifcation of tumours of endocrine organs. IARC Publications, Lyon

    Google Scholar 

  8. Chatzellis E, Alexandraki KI, Androulakis II, Kaltsas G (2015) Aggressive pituitary tumors. Neuroendocrinology 101:87–104. https://doi.org/10.1159/000371806

    Article  CAS  PubMed  Google Scholar 

  9. Raverot G et al (2018) European Society of Endocrinology Clinical Practice Guidelines for the management of aggressive pituitary tumours and carcinomas. Eur J Endocrinol 178:G1–G24. https://doi.org/10.1530/EJE-17-0796

    Article  CAS  PubMed  Google Scholar 

  10. Trouillas J et al (2013) A new prognostic clinicopathological classification of pituitary adenomas: a multicentric case-control study of 410 patients with 8 years post-operative follow-up. Acta Neuropathol 126:123–135. https://doi.org/10.1007/s00401-013-1084-y

    Article  PubMed  Google Scholar 

  11. McCormack A et al (2018) Treatment of aggressive pituitary tumours and carcinomas: results of a european Society of Endocrinology (ESE) survey 2016. Eur J Endocrinol 178:265–276. https://doi.org/10.1530/EJE-17-0933

    Article  CAS  PubMed  Google Scholar 

  12. Trouillas J et al (2018) Aggressive pituitary tumours and carcinomas: two sides of the same coin? Eur J Endocrinol 178:C7–C9. https://doi.org/10.1530/EJE-18-0250

    Article  CAS  PubMed  Google Scholar 

  13. Maiter D, Delgrange E (2014) Therapy of endocrine disease: the challenges in managing giant prolactinomas. Eur J Endocrinol 170:R213–227. https://doi.org/10.1530/EJE-14-0013

    Article  CAS  PubMed  Google Scholar 

  14. Shrivastava RK, Arginteanu MS, King WA, Post KD (2002) Giant prolactinomas: clinical management and long-term follow up. J Neurosurg 97:299–306. https://doi.org/10.3171/jns.2002.97.2.0299

    Article  PubMed  Google Scholar 

  15. Delgrange E et al (2014) Giant prolactinomas in women. Eur J Endocrinol 170:31–38. https://doi.org/10.1530/EJE-13-0503

    Article  CAS  PubMed  Google Scholar 

  16. Jennings JE et al (2009) Aggressive pituitary adenomas occurring in young patients in a large polynesian kindred with a germline R271W mutation in the AIP gene. Eur J Endocrinol 161:799–804. https://doi.org/10.1530/EJE-09-0406

    Article  CAS  PubMed  Google Scholar 

  17. de Castro LF et al (2018) Beneficial Effects of high doses of Cabergoline in the treatment of Giant Prolactinoma resistant to dopamine agonists: a Case Report with a 21-Year Follow-Up. Horm Res Paediatr 89:63–70. https://doi.org/10.1159/000479511

    Article  CAS  PubMed  Google Scholar 

  18. Wu ZB et al (2006) Bromocriptine treatment of invasive giant prolactinomas involving the cavernous sinus: results of a long-term follow up. J Neurosurg 104:54–61. https://doi.org/10.3171/jns.2006.104.1.54

    Article  CAS  PubMed  Google Scholar 

  19. Huang HY, Zhai W, Tang H, Hui GZ, Wu ZB (2018) Cabergoline for the treatment of bromocriptine-resistant invasive giant prolactinomas. Endocrine 62:464–469. https://doi.org/10.1007/s12020-018-1702-5

    Article  CAS  PubMed  Google Scholar 

  20. Semple P, Fieggen G, Parkes J, Levitt N (2007) Giant prolactinomas in adolescence: an uncommon cause of blindness. Childs Nerv Syst 23:213–217. https://doi.org/10.1007/s00381-006-0177-5

    Article  PubMed  Google Scholar 

  21. Salenave S et al (2015) Macroprolactinomas in children and adolescents: factors associated with the response to treatment in 77 patients. J Clin Endocrinol Metab 100:1177–1186. https://doi.org/10.1210/jc.2014-3670

    Article  CAS  PubMed  Google Scholar 

  22. Cook RJ, Uttley D, Wilkins PR, Archer DJ, Bell BA (1994) Prolactinomas in men masquerading as invasive skull base tumours. Br J Neurosurg 8:51–55

    Article  PubMed  Google Scholar 

  23. Rix M et al (2004) Cushing’s disease in childhood as the first manifestation of multiple endocrine neoplasia syndrome type 1. Eur J Endocrinol 151:709–715

    Article  CAS  PubMed  Google Scholar 

  24. Makri A et al (2018) Children with MEN1 gene mutations may present first (and at a young age) with cushing disease. Clin Endocrinol (Oxf) 89:437–443. https://doi.org/10.1111/cen.13796

    Article  CAS  PubMed  Google Scholar 

  25. Stratakis CA et al (2000) Pituitary macroadenoma in a 5-year-old: an early expression of multiple endocrine neoplasia type 1. J Clin Endocrinol Metab 85:4776–4780. https://doi.org/10.1210/jcem.85.12.7064

    Article  CAS  PubMed  Google Scholar 

  26. Melmed S et al (2011) Diagnosis and treatment of hyperprolactinemia: an endocrine Society clinical practice guideline. J Clin Endocrinol Metab 96:273–288. https://doi.org/10.1210/jc.2010-1692

    Article  CAS  PubMed  Google Scholar 

  27. Yu C, Wu Z, Gong J (2005) Combined treatment of invasive giant prolactinomas. Pituitary 8:61–65. https://doi.org/10.1007/s11102-005-5087-0

    Article  CAS  PubMed  Google Scholar 

  28. Acharya SV, Gopal RA, Menon PS, Bandgar TR, Shah NS (2010) Giant prolactinoma and effectiveness of medical management. Endocr Pract 16:42–46. https://doi.org/10.4158/EP09221.OR

    Article  PubMed  Google Scholar 

  29. Felker J, Patterson B, Wrubel D, Janss A (2016) Successful treatment of a child with a prolactin secreting macroadenoma with temozolomide. J Pediatr Endocrinol Metab 29:1413–1415. https://doi.org/10.1515/jpem-2016-0159

    Article  CAS  PubMed  Google Scholar 

  30. Lasolle H et al (2017) Temozolomide treatment can improve overall survival in aggressive pituitary tumors and pituitary carcinomas. Eur J Endocrinol 176:769–777. https://doi.org/10.1530/EJE-16-0979

    Article  CAS  PubMed  Google Scholar 

  31. Whitelaw BC et al (2012) Temozolomide in the management of dopamine agonist-resistant prolactinomas. Clin Endocrinol (Oxf) 76:877–886. https://doi.org/10.1111/j.1365-2265.2012.04373.x

    Article  CAS  PubMed  Google Scholar 

  32. Rostomyan L et al (2015) Clinical and genetic characterization of pituitary gigantism: an international collaborative study in 208 patients. Endocr Relat Cancer 22:745–757. https://doi.org/10.1530/ERC-15-0320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Personnier C et al (2011) Clinical features and treatment of pediatric somatotropinoma: case study of an aggressive tumor due to a new AIP mutation and extensive literature review. Horm Res Paediatr 75:392–402. https://doi.org/10.1159/000327831

    Article  CAS  PubMed  Google Scholar 

  34. Stratakis CA et al (2010) The role of germline AIP, MEN1, PRKAR1A, CDKN1B and CDKN2C mutations in causing pituitary adenomas in a large cohort of children, adolescents, and patients with genetic syndromes. Clin Genet 78:457–463. https://doi.org/10.1111/j.1399-0004.2010.01406.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Katznelson L et al (2014) Acromegaly: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 99:3933–3951. https://doi.org/10.1210/jc.2014-2700

    Article  CAS  PubMed  Google Scholar 

  36. Gupta P et al (2018) Imatinib inhibits GH Secretion from Somatotropinomas. Front Endocrinol (Lausanne) 9:453. https://doi.org/10.3389/fendo.2018.00453

    Article  PubMed  Google Scholar 

  37. Dutta P et al (2019) Surgery, Octreotide, Temozolomide, Bevacizumab, Radiotherapy, and Pegvisomant Treatment of an AIP MutationPositive child. J Clin Endocrinol Metab 104:3539–3544. https://doi.org/10.1210/jc.2019-00432

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nozieres C et al (2011) Sporadic and genetic forms of paediatric somatotropinoma: a retrospective analysis of seven cases and a review of the literature. Orphanet J Rare Dis 6:67. https://doi.org/10.1186/1750-1172-6-67

    Article  PubMed  PubMed Central  Google Scholar 

  39. Crooke AC, Purves HD, Russell DS, Thornton KR (1956) Hyalinization and basophil adenomata in the pituitary gland. Proc R Soc Med 49:1014–1020

    CAS  PubMed  Google Scholar 

  40. George DH et al (2003) Crooke’s cell adenoma of the pituitary: an aggressive variant of corticotroph adenoma. Am J Surg Pathol 27:1330–1336

    Article  PubMed  Google Scholar 

  41. Oldfield EH et al (2015) Crooke’s changes in Cushing’s Syndrome depends on degree of hypercortisolism and individual susceptibility. J Clin Endocrinol Metab 100:3165–3171. https://doi.org/10.1210/JC.2015-2493

    Article  CAS  PubMed  Google Scholar 

  42. Di Ieva A et al (2015) Crooke’s cell tumors of the pituitary. Neurosurgery 76:616–622. https://doi.org/10.1227/NEU.0000000000000657

    Article  PubMed  Google Scholar 

  43. Giri D, Roncaroli F, Sinha A, Didi M, Senniappan S (2017) Silent Crooke’s cell corticotroph adenoma of the pituitary gland presenting as delayed puberty. Endocrinol Diabetes Metab Case Rep doi:https://doi.org/10.1530/EDM-16-0153 (2017)

  44. Felix IA, Horvath E, Kovacs K (1981) Massive Crooke’s hyalinization in corticotroph cell adenomas of the human pituitary. A histological, immunocytological, and electron microscopic study of three cases. Acta Neurochir (Wien) 58:235–243. https://doi.org/10.1007/bf01407130

    Article  CAS  PubMed  Google Scholar 

  45. Holthouse DJ, Robbins PD, Kahler R, Knuckey N, Pullan P (2001) Corticotroph pituitary carcinoma: case report and literature review. Endocr Pathol 12:329–341

    Article  CAS  PubMed  Google Scholar 

  46. Kovacs GL et al (2013) ACTH-secreting Crooke cell carcinoma of the pituitary. Eur J Clin Invest 43:20–26. https://doi.org/10.1111/eci.12010

    Article  PubMed  Google Scholar 

  47. Jahangiri A et al (2013) A comprehensive long-term retrospective analysis of silent corticotrophic adenomas vs hormone-negative adenomas. Neurosurgery 73, 8–17; discussion 17–18, doi:https://doi.org/10.1227/01.neu.0000429858.96652.1e

  48. Nishioka H, Inoshita N, Sano T, Fukuhara N, Yamada S (2012) Correlation between histological subtypes and MRI findings in clinically nonfunctioning pituitary adenomas. Endocr Pathol 23:151–156. https://doi.org/10.1007/s12022-012-9208-9

    Article  PubMed  Google Scholar 

  49. Cohen-Inbar O et al (2017) Prognostic significance of corticotroph staining in radiosurgery for non-functioning pituitary adenomas: a multicenter study. J Neurooncol 135:67–74. https://doi.org/10.1007/s11060-017-2520-y

    Article  PubMed  Google Scholar 

  50. Zoli M et al (2015) ACTH adenomas transforming their clinical expression: report of 5 cases. Neurosurg Focus 38:E15. https://doi.org/10.3171/2014.11.FOCUS14679

    Article  PubMed  Google Scholar 

  51. Scheithauer BW et al (2000) Clinically silent corticotroph tumors of the pituitary gland. Neurosurgery 47:723–729. https://doi.org/10.1097/00006123-200009000-00039. ; discussion 729–730

    Article  CAS  PubMed  Google Scholar 

  52. Cho HY et al (2010) Silent corticotroph adenomas have unique recurrence characteristics compared with other nonfunctioning pituitary adenomas. Clin Endocrinol (Oxf) 72:648–653. https://doi.org/10.1111/j.1365-2265.2009.03673.x

    Article  PubMed  Google Scholar 

  53. Oka H et al (1996) Pituitary choristoma composed of corticotrophs and adrenocortical cells in the sella turcica. Virchows Arch 427:613–617

    Article  CAS  PubMed  Google Scholar 

  54. Coire CI et al (1998) A composite silent corticotroph pituitary adenoma with interspersed adrenocortical cells: case report. Neurosurgery 42:650–654. https://doi.org/10.1097/00006123-199803000-00039

    Article  CAS  PubMed  Google Scholar 

  55. Guzel A et al (2008) Pituitary carcinoma presenting with multiple metastases: case report. J Child Neurol 23:1467–1471. https://doi.org/10.1177/0883073808319078

    Article  PubMed  Google Scholar 

  56. Tysome J, Gnanalingham KK, Chopra I, Mendoza N (2004) Intradural metastatic spinal cord compression from ACTH-secreting pituitary carcinoma. Acta Neurochir (Wien) 146:1251–1254. https://doi.org/10.1007/s00701-004-0350-0

    Article  CAS  PubMed  Google Scholar 

  57. Graf CJ, Blinderman EE, Terplan KL (1962) Pituitary carcinoma in a child with distant metastases. J Neurosurg 19:254–259. https://doi.org/10.3171/jns.1962.19.3.0254

    Article  CAS  PubMed  Google Scholar 

  58. Balili I, Sullivan S, McKeever P, Barkan A (2014) Pituitary carcinoma with endolymphatic sac metastasis. Pituitary 17:210–213. https://doi.org/10.1007/s11102-013-0489-x

    Article  CAS  PubMed  Google Scholar 

  59. Vroonen L et al (2012) Prolactinomas resistant to standard doses of cabergoline: a multicenter study of 92 patients. Eur J Endocrinol 167:651–662. https://doi.org/10.1530/EJE-12-0236

    Article  CAS  PubMed  Google Scholar 

  60. AbdelBaki MS et al (2017) Significant response of pituitary carcinoma to carboplatin, leucovorin and fluorouracil chemotherapy: a pediatric case report and review of the literature. J Neurooncol 135:213–215. https://doi.org/10.1007/s11060-017-2554-1

    Article  PubMed  Google Scholar 

  61. Kaiser FE, Orth DN, Mukai K, Oppenheimer JH (1983) A pituitary parasellar tumor with extracranial metastases and high, partially suppressible levels of adrenocorticotropin and related peptides. J Clin Endocrinol Metab 57:649–653. https://doi.org/10.1210/jcem-57-3-649

    Article  CAS  PubMed  Google Scholar 

  62. Lormeau B, Miossec P, Sibony M, Valensi P, Attali JR (1997) Adrenocorticotropin-producing pituitary carcinoma with liver metastasis. J Endocrinol Invest 20:230–236. https://doi.org/10.1007/BF03346909

    Article  CAS  PubMed  Google Scholar 

  63. Iacovazzo D, Hernandez-Ramirez LC, Korbonits M (2017) Sporadic pituitary adenomas: the role of germline mutations and recommendations for genetic screening. Expert Rev Endocrinol Metab 12:143–153. https://doi.org/10.1080/17446651.2017.1306439

    Article  CAS  PubMed  Google Scholar 

  64. Cuny T et al (2013) Genetic analysis in young patients with sporadic pituitary macroadenomas: besides AIP don’t forget MEN1 genetic analysis. Eur J Endocrinol 168:533–541. https://doi.org/10.1530/EJE-12-0763

    Article  CAS  PubMed  Google Scholar 

  65. Chandrasekharappa SC et al (1997) Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 276:404–407. https://doi.org/10.1126/science.276.5311.404

    Article  CAS  PubMed  Google Scholar 

  66. Occhi G et al (2013) A novel mutation in the upstream open reading frame of the CDKN1B gene causes a MEN4 phenotype. PLoS Genet 9:e1003350. https://doi.org/10.1371/journal.pgen.1003350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Verges B et al (2002) Pituitary disease in MEN type 1 (MEN1): data from the France-Belgium MEN1 multicenter study. J Clin Endocrinol Metab 87:457–465. https://doi.org/10.1210/jcem.87.2.8145

    Article  CAS  PubMed  Google Scholar 

  68. Trouillas J et al (2008) Pituitary tumors and hyperplasia in multiple endocrine neoplasia type 1 syndrome (MEN1): a case-control study in a series of 77 patients versus 2509 non-MEN1 patients. Am J Surg Pathol 32:534–543. https://doi.org/10.1097/PAS.0b013e31815ade45

    Article  PubMed  Google Scholar 

  69. Giusti F et al (2017) Multiple endocrine neoplasia syndrome type 1: institution, management, and data analysis of a nationwide multicenter patient database. Endocrine 58:349–359. https://doi.org/10.1007/s12020-017-1234-4

    Article  CAS  PubMed  Google Scholar 

  70. Delemer B (2012) MEN1 and pituitary adenomas. Ann Endocrinol (Paris) 73:59–61. https://doi.org/10.1016/j.ando.2012.03.038

    Article  CAS  PubMed  Google Scholar 

  71. Hernández-Ramírez L, Faucz CF, Lodish FR, Pankratz M, Chittiboina N, Lane P, Kay J, Mills D, Stratakis J (2019) Non-syndromic Cushing’s Disease due to CDKN1B mutations: novel mutations and phenotypic features in a large Pediatric Cohort. J Endocr Soc 3:OR24–26

    Article  PubMed Central  Google Scholar 

  72. de Laat JM et al (2015) Long-term natural course of Pituitary Tumors in patients with MEN1: results from the DutchMEN1 Study Group (DMSG). J Clin Endocrinol Metab 100:3288–3296. https://doi.org/10.1210/JC.2015-2015

    Article  CAS  PubMed  Google Scholar 

  73. Subasinghe CJ, Somasundaram N, Sivatharshya P, Ranasinghe LD, Korbonits M (2018) Giant Prolactinoma of Young Onset: A Clue to Diagnosis of MEN-1 Syndrome. Case Rep Endocrinol 2875074, doi:https://doi.org/10.1155/2018/2875074 (2018)

  74. Gan HW et al (2015) Treatment-resistant pediatric giant prolactinoma and multiple endocrine neoplasia type 1. Int J Pediatr Endocrinol 15, doi:https://doi.org/10.1186/s13633-015-0011-5 (2015)

  75. Kontogeorgos G, Kapranos N, Tzavara I, Thalassinos N, Rologis D (2001) Monosomy of chromosome 11 in pituitary adenoma in a patient with familial multiple endocrine neoplasia type 1. Clin Endocrinol (Oxf) 54:117–120. https://doi.org/10.1046/j.1365-2265.2001.01031.x

    Article  CAS  PubMed  Google Scholar 

  76. Vannucci L et al (2018) MEN1 in children and adolescents: data from patients of a regional referral center for hereditary endocrine tumors. Endocrine 59:438–448. https://doi.org/10.1007/s12020-017-1322-5

    Article  CAS  PubMed  Google Scholar 

  77. Vierimaa O et al (2006) Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science 312:1228–1230. https://doi.org/10.1126/science.1126100

    Article  CAS  PubMed  Google Scholar 

  78. Daly AF et al (2007) Aryl hydrocarbon receptor-interacting protein gene mutations in familial isolated pituitary adenomas: analysis in 73 families. J Clin Endocrinol Metab 92:1891–1896. https://doi.org/10.1210/jc.2006-2513

    Article  CAS  PubMed  Google Scholar 

  79. Schofl C et al (2014) Frequency of AIP gene mutations in young patients with acromegaly: a registry-based study. J Clin Endocrinol Metab 99:E2789–2793. https://doi.org/10.1210/jc.2014-2094

    Article  CAS  PubMed  Google Scholar 

  80. Georgitsi M et al (2008) Aryl hydrocarbon receptor interacting protein (AIP) gene mutation analysis in children and adolescents with sporadic pituitary adenomas. Clin Endocrinol (Oxf) 69:621–627. https://doi.org/10.1111/j.1365-2265.2008.03266.x

    Article  CAS  PubMed  Google Scholar 

  81. Daly AF et al (2010) Clinical characteristics and therapeutic responses in patients with germ-line AIP mutations and pituitary adenomas: an international collaborative study. J Clin Endocrinol Metab 95:E373–383. https://doi.org/10.1210/jc.2009-2556

    Article  PubMed  Google Scholar 

  82. Caimari F et al (2018) Risk category system to identify pituitary adenoma patients with AIP mutations. J Med Genet 55:254–260. https://doi.org/10.1136/jmedgenet-2017-104957

    Article  CAS  PubMed  Google Scholar 

  83. Naves LA et al (2010) Aggressive prolactinoma in a child related to germline mutation in the ARYL hydrocarbon receptor interacting protein (AIP) gene. Arq Bras Endocrinol Metabol 54:761–767

    Article  PubMed  Google Scholar 

  84. Joshi K, Daly AF, Beckers A, Zacharin M (2018) Resistant paediatric somatotropinomas due to AIP mutations: role of Pegvisomant. Horm Res Paediatr 90:196–202. https://doi.org/10.1159/000488856

    Article  CAS  PubMed  Google Scholar 

  85. Trivellin G et al (2014) Gigantism and acromegaly due to Xq26 microduplications and GPR101 mutation. N Engl J Med 371:2363–2374. https://doi.org/10.1056/NEJMoa1408028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Daly AF et al (2016) Somatic mosaicism underlies X-linked acrogigantism syndrome in sporadic male subjects. Endocr Relat Cancer 23:221–233. https://doi.org/10.1530/ERC-16-0082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Beckers A et al (2015) X-linked acrogigantism syndrome: clinical profile and therapeutic responses. Endocr Relat Cancer 22:353–367. https://doi.org/10.1530/ERC-15-0038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Naves LA et al (2016) Aggressive tumor growth and clinical evolution in a patient with X-linked acro-gigantism syndrome. Endocrine 51:236–244. https://doi.org/10.1007/s12020-015-0804-6

    Article  CAS  PubMed  Google Scholar 

  89. Reincke M et al (2015) Mutations in the deubiquitinase gene USP8 cause Cushing’s disease. Nat Genet 47:31–38. https://doi.org/10.1038/ng.3166

    Article  CAS  PubMed  Google Scholar 

  90. Ma ZY et al (2015) Recurrent gain-of-function USP8 mutations in Cushing’s disease. Cell Res 25:306–317. https://doi.org/10.1038/cr.2015.20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Faucz FR et al (2017) Somatic USP8 gene mutations are a Common cause of Pediatric Cushing Disease. J Clin Endocrinol Metab 102:2836–2843. https://doi.org/10.1210/jc.2017-00161

    Article  PubMed  PubMed Central  Google Scholar 

  92. Albani A et al (2018) The USP8 mutational status may predict long-term remission in patients with Cushing’s disease. Clin Endocrinol (Oxf). https://doi.org/10.1111/cen.13802

    Article  PubMed  Google Scholar 

  93. Cohen M et al (2019) Germline USP8 mutation associated with pediatric cushing disease and other clinical features: a new syndrome. J Clin Endocrinol Metab. https://doi.org/10.1210/jc.2019-00697

    Article  PubMed  PubMed Central  Google Scholar 

  94. de Kock L et al (2014) Pituitary blastoma: a pathognomonic feature of germ-line DICER1 mutations. Acta Neuropathol 128:111–122. https://doi.org/10.1007/s00401-014-1285-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tatsi C, Stratakis CA (2018) Neonatal cushing syndrome: a rare but potentially devastating disease. Clin Perinatol 45:103–118. https://doi.org/10.1016/j.clp.2017.10.002

    Article  PubMed  Google Scholar 

  96. Foulkes WD, Priest JR, Duchaine TF (2014) DICER1: mutations, microRNAs and mechanisms. Nat Rev Cancer 14:662–672. https://doi.org/10.1038/nrc3802

    Article  CAS  PubMed  Google Scholar 

  97. Tatsi C et al (2019) Large genomic aberrations in Corticotropinomas are Associated with Greater aggressiveness. J Clin Endocrinol Metab 104:1792–1801. https://doi.org/10.1210/jc.2018-02164

    Article  PubMed  Google Scholar 

  98. Bi WL et al (2017) Landscape of genomic alterations in Pituitary Adenomas. Clin Cancer Res 23:1841–1851. https://doi.org/10.1158/1078-0432.CCR-16-0790

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work is in part supported by the Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health and in part by internal funds, IMBB, FORTH, Heraklion, Crete, Greece.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Stratakis wrote the manuscript. We also thank Dr. Christina Tatsi, NICHD, NI, for her contributions.

Corresponding author

Correspondence to Constantine A. Stratakis.

Ethics declarations

Competing interests

Dr. Stratakis holds patents on technologies involving PRKAR1A, PDE11A, GPR101 and related genes, and his laboratory has received research funding support by Pfizer Inc., unrelated to this project. Dr. Stratakis currently receives support by ELPEN pharmaceuticals SA, Human Longevity Inc., and has consulted for companies in the last six months on items unrelated to the subject of this report, such as Lundbeck Pharmaceuticals and Sterotherapeutics.

Ethics approval

Non-applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stratakis, C.A. An update on, and genetics of refractory adenomas of childhood. Pituitary 26, 281–287 (2023). https://doi.org/10.1007/s11102-023-01327-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-023-01327-2

Keywords

Navigation