Skip to main content
Log in

Endocrine disorders after primary gamma knife radiosurgery for pituitary adenomas: A systematic review and meta-analysis

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Purpose

Gamma Knife radiosurgery (GKRS) is feasible for pituitary adenomas, but post-surgery GKRS may cause severe hormone deficits. We reviewed the literature on primary GKRS for pituitary adenoma focusing on radiation-induced hormone deficiencies.

Methods

PubMed, Web-of-Science, Scopus, and Cochrane were searched upon the PRISMA guidelines to include studies describing primary GKRS for pituitary adenomas. Pooled-rates of GKRS-induced hormone deficiencies and clinical-radiological responses were analyzed with a random-effect model meta-analysis.

Results

We included 24 studies comprising 1381 patients. Prolactinomas were the most common (34.2%), and 289 patients had non-functioning adenomas (20.9%). Median tumor volume was 1.6cm3 (range, 0.01–31.3), with suprasellar extension and cavernous sinus invasion detected in 26% and 31.1% cases. GKRS was delivered with median marginal dose 22.6 Gy (range, 6–49), maximum dose 50 Gy (range, 25–90), and isodose line 50% (range, 9–100%). Median maximum point doses were 9 Gy (range, 0.5–25) to the pituitary stalk, 7 Gy (range, 1–38) to the optic apparatus, and 5 Gy (range, 0.4–12.3) to the optic chiasm. Pooled 5 year rates of endocrine normalization and local tumor control were 48% (95%CI 45–51%) and 97% (95%CI 95–98%). 158 patients (11.4%) experienced endocrinopathies at a median of 45 months (range, 4–187.3) after GKRS, with pooled 5-year rates of 8% (95%CI 6–9%). GKRS-induced hormone deficiencies comprised secondary hypothyroidism (42.4%) and hypogonadotropic hypogonadism (33.5%), with panhypopituitarism reported in 31 cases (19.6%).

Conclusion

Primary GKRS for pituitary adenoma may correlate with lower rates of radiation-induced hypopituitarism (11.4%) than post-surgery GKRS (18–32%). Minimal doses to normal pituitary structures and long-term endocrine follow-up are of primary importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All authors confirm the appropriateness of all dataset and software used for supporting the conclusion.

Code availability

Not applicable.

References

  1. Musleh W, Sonabend M, A, Lesniak MS, (2006) Role of craniotomy in the management of pituitary adenomas and sellar/parasellar tumors. Expert Rev Anticancer Ther 6:S79–S83. https://doi.org/10.1586/14737140.6.9s.S79

    Article  PubMed  Google Scholar 

  2. Sheehan JP, Starke RM, Kano H et al (2014) Gamma Knife radiosurgery for sellar and parasellar meningiomas: a multicenter study. J Neurosurg 120:1268–1277. https://doi.org/10.3171/2014.2.JNS13139

    Article  PubMed  Google Scholar 

  3. Kotecha R, Sahgal A, Rubens M et al (2020) Stereotactic radiosurgery for non-functioning pituitary adenomas: meta-analysis and International Stereotactic Radiosurgery Society practice opinion. Neuro Oncol 22:318–332. https://doi.org/10.1093/neuonc/noz225

    Article  PubMed  Google Scholar 

  4. Lee C-C, Sheehan JP (2016) Advances in gamma knife radiosurgery for pituitary tumors. Curr Opin Endocrinol Diabetes Obes 23:331–338. https://doi.org/10.1097/MED.0000000000000269

    Article  CAS  PubMed  Google Scholar 

  5. Castinetti F, Régis J, Dufour H, Brue T (2010) Role of stereotactic radiosurgery in the management of pituitary adenomas. Nat Rev Endocrinol 6:214–223. https://doi.org/10.1038/nrendo.2010.4

    Article  PubMed  Google Scholar 

  6. Li X, Li Y, Cao Y et al (2017) Safety and efficacy of fractionated stereotactic radiotherapy and stereotactic radiosurgery for treatment of pituitary adenomas: a systematic review and meta-analysis. J Neurol Sci 372:110–116. https://doi.org/10.1016/j.jns.2016.11.024

    Article  PubMed  Google Scholar 

  7. Lunsford LD, Flickinger J, Lindner G, Maitz A (1989) Stereotactic radiosurgery of the brain using the first united states 201 cobalt-60 source gamma knife. Neurosurgery 24:151–159. https://doi.org/10.1227/00006123-198902000-00001

    Article  CAS  PubMed  Google Scholar 

  8. Benjamin C, Ashayeri K, Golfinos JG et al (2020) Treatment of sellar metastases with gamma knife radiosurgery in patients with advanced cancer. Pituitary 23:665–671. https://doi.org/10.1007/s11102-020-01074-8

    Article  PubMed  Google Scholar 

  9. Cordeiro D, Xu Z, Mehta GU et al (2019) Hypopituitarism after gamma knife radiosurgery for pituitary adenomas: a multicenter, international study. J Neurosurg 131:1188–1196. https://doi.org/10.3171/2018.5.JNS18509

    Article  Google Scholar 

  10. Higham CE, Johannsson G, Shalet SM (2016) Hypopituitarism. Lancet 388:2403–2415. https://doi.org/10.1016/S0140-6736(16)30053-8

    Article  CAS  PubMed  Google Scholar 

  11. Jasim S, Alahdab F, Ahmed AT et al (2017) Mortality in adults with hypopituitarism: a systematic review and meta-analysis. Endocrine 56:33–42. https://doi.org/10.1007/s12020-016-1159-3

    Article  CAS  PubMed  Google Scholar 

  12. Knappe UJ, Petroff D, Quinkler M et al (2020) Fractionated radiotherapy and radiosurgery in acromegaly: analysis of 352 patients from the German acromegaly registry. Eur J Endocrinol 182:275–284. https://doi.org/10.1530/EJE-19-0784

    Article  CAS  PubMed  Google Scholar 

  13. Cohen-Inbar O, Ramesh A, Xu Z et al (2016) Gamma knife radiosurgery in patients with persistent acromegaly or Cushing’s disease: long-term risk of hypopituitarism. Clin Endocrinol (Oxf) 84:524–531. https://doi.org/10.1111/cen.12938

    Article  Google Scholar 

  14. Yu J, Li Y, Quan T et al (2020) Initial gamma knife radiosurgery for nonfunctioning pituitary adenomas: results from a 26-year experience. Endocrine 68:399–410. https://doi.org/10.1007/s12020-020-02260-1

    Article  CAS  PubMed  Google Scholar 

  15. Pekic S, Miljic D, Popovic V, et al (2021) Hypopituitarism Following Cranial Radiotherapy. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.

  16. Sicignano G, Losa M, del Vecchio A et al (2012) Dosimetric factors associated with pituitary function after gamma knife surgery (GKS) of pituitary adenomas. Radiother Oncol 104:119–124. https://doi.org/10.1016/j.radonc.2012.03.021

    Article  PubMed  Google Scholar 

  17. Starke RM, Williams BJ, Jane JA, Sheehan JP (2012) Gamma Knife surgery for patients with nonfunctioning pituitary macroadenomas: predictors of tumor control, neurological deficits, and hypopituitarism. J Neurosurg 117:129–135. https://doi.org/10.3171/2012.4.JNS112250

    Article  PubMed  Google Scholar 

  18. Graffeo CS, Perry A, Link MJ et al (2021) Biological effective dose as a predictor of hypopituitarism after single-fraction pituitary adenoma radiosurgery: dosimetric analysis and cohort study of patients treated using contemporary techniques. Neurosurgery 88:E330–E335. https://doi.org/10.1093/neuros/nyaa555

    Article  PubMed  Google Scholar 

  19. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  20. Akabane A, Yamada S, Jokura H (2005) Gamma knife radiosurgery for pituitary adenomas. Endocrine 28:087–092. https://doi.org/10.1385/ENDO:28:1:087

    Article  CAS  Google Scholar 

  21. Jeremy Howick, Iain Chalmers, Paul Glasziou, Trish Greenhalgh, Carl Heneghan, Alessandro Liberati, Ivan Moschetti, Bob Phillips and HT (2011) Explanation of the 2011 Oxford Centre for Evidence-Based Medicine (OCEBM) Levels of Evidence (Background Document). In: Oxford Cent. Evidence-Based Med. https://www.cebm.ox.ac.uk/resources/levels-of-evidence/ocebm-levels-of-evidence. Accessed 20 Nov 2022.

  22. Joanna Briggs Institute (2020) Checklist for Case Series. https://jbi.global/critical-appraisal-tools. Accessed 20 Nov 2022.

  23. Wilson EB (1927) Probable inference, the law of succession, and statistical inference. J Am Stat Assoc 22:209–212. https://doi.org/10.1080/01621459.1927.10502953

    Article  Google Scholar 

  24. Freeman MF, Tukey JW (1950) Transformations related to the angular and the square root. Ann Math Stat 21:607–611. https://doi.org/10.1214/aoms/1177729756

    Article  Google Scholar 

  25. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188. https://doi.org/10.1016/0197-2456(86)90046-2

    Article  CAS  PubMed  Google Scholar 

  26. Higgins JPT (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560. https://doi.org/10.1136/bmj.327.7414.557

    Article  PubMed  PubMed Central  Google Scholar 

  27. Degerblad M, Rähn T, Bergstrand G, Thorén M (1986) Long-term results of stereotactic radiosurgery to the pituitary gland in Cushing’s disease. Acta Endocrinol (Copenh) 112:310–314. https://doi.org/10.1530/acta.0.1120310

    Article  CAS  Google Scholar 

  28. Castinetti F, Nagai M, Morange I et al (2009) Long-term results of stereotactic radiosurgery in secretory pituitary adenomas. J Clin Endocrinol Metab 94:3400–3407. https://doi.org/10.1210/jc.2008-2772

    Article  CAS  PubMed  Google Scholar 

  29. Wan H, Chihiro O, Yuan S (2009) MASEP gamma knife radiosurgery for secretory pituitary adenomas: experience in 347 consecutive cases. J Exp Clin Cancer Res 28:36. https://doi.org/10.1186/1756-9966-28-36

    Article  PubMed  PubMed Central  Google Scholar 

  30. Marek J, Ježková J, Hána V et al (2011) Is it possible to avoid hypopituitarism after irradiation of pituitary adenomas by the Leksell gamma knife? Eur J Endocrinol 164:169–178. https://doi.org/10.1530/EJE-10-0733

    Article  CAS  PubMed  Google Scholar 

  31. Lee C-C, Kano H, Yang H-C et al (2014) Initial gamma knife radiosurgery for nonfunctioning pituitary adenomas. J Neurosurg 120:647–654. https://doi.org/10.3171/2013.11.JNS131757

    Article  PubMed  Google Scholar 

  32. Hasegawa T, Shintai K, Kato T, Iizuka H (2015) Stereotactic radiosurgery as the initial treatment for patients with nonfunctioning pituitary adenomas. World Neurosurg 83:1173–1179. https://doi.org/10.1016/j.wneu.2015.01.054

    Article  PubMed  Google Scholar 

  33. Gupta A, Xu Z, Kano H et al (2019) Upfront gamma knife radiosurgery for Cushing’s disease and acromegaly: a multicenter, international study. J Neurosurg 131:532–538. https://doi.org/10.3171/2018.3.JNS18110

    Article  Google Scholar 

  34. Sims-Williams HP, Rajapaksa K, Sinha S et al (2019) Radiosurgery as primary management for acromegaly. Clin Endocrinol (Oxf) 90:114–121. https://doi.org/10.1111/cen.13870

    Article  Google Scholar 

  35. Ježková J, Hána V, Kosák M et al (2019) Role of gamma knife radiosurgery in the treatment of prolactinomas. Pituitary 22:411–421. https://doi.org/10.1007/s11102-019-00971-x

    Article  CAS  PubMed  Google Scholar 

  36. Lee WJ, Cho K-R, Choi J-W et al (2020) Gamma knife radiosurgery as a primary treatment for nonfunctioning pituitary adenoma invading the cavernous sinus. Stereotact Funct Neurosurg 98:371–377. https://doi.org/10.1159/000508737

    Article  PubMed  Google Scholar 

  37. Li Y, Huang M, Liang S et al (2020) Gamma knife radiosurgery (GKRS) for patients with prolactinomas: long-term results from a single-center experience. Med Sci Monit 26:1–7

    Google Scholar 

  38. Martinez R, Bravo G, Burzaco J, Rey G (1998) Pituitary tumors and gamma knife surgery - clinical experience with more than two years of follow-up. Stereotact Funct Neurosurg 70:110–118. https://doi.org/10.1159/000056413

    Article  PubMed  Google Scholar 

  39. Mohammed N, Ding D, Hung Y et al (2020) Primary versus postoperative stereotactic radiosurgery for acromegaly: a multicenter matched cohort study. J Neurosurg 132:1507–1516. https://doi.org/10.3171/2019.1.JNS183398

    Article  Google Scholar 

  40. Kara M, Yılmaz M, Şengöz M, Peker S (2021) Hormonal and radiologic outcomes after gamma knife radiosurgery for nonfunctioning pituitary adenomas. Br J Neurosurg. https://doi.org/10.1080/02688697.2021.1903388

    Article  PubMed  Google Scholar 

  41. Wu Y, Wang M, Xu Y et al (2021) Comparing primary gamma knife radiosurgery and postoperative gamma knife radiosurgery for acromegaly: a monocenter retrospective study. Clin Neurol Neurosurg 200:106385. https://doi.org/10.1016/j.clineuro.2020.106385

    Article  PubMed  Google Scholar 

  42. Zhang L, Chen W, Ding C et al (2021) Gamma knife radiosurgery as the initial treatment for elderly patients with nonfunctioning pituitary adenomas. J Neurooncol 152:257–264. https://doi.org/10.1007/s11060-021-03724-8

    Article  PubMed  Google Scholar 

  43. Lim YL, Leem W, Kim TS et al (1998) Four years’ experiences in the treatment of pituitary adenomas with gamma knife radiosurgery. Stereotact Funct Neurosurg 70:95–109. https://doi.org/10.1159/000056412

    Article  PubMed  Google Scholar 

  44. Pan L, Zhang N, Wang EM et al (2000) Gamma knife radiosurgery as a primary treatment for prolactinomas. J Neurosurg 93(Suppl 3):10–13. https://doi.org/10.3171/jns.2000.93.supplement

    Article  PubMed  Google Scholar 

  45. Zhang N, Pan L, Wang EM et al (2000) Radiosurgery for growth hormone—producing pituitary adenomas. J Neurosurg 93:6–9. https://doi.org/10.3171/jns.2000.93.supplement_3.0006

    Article  PubMed  Google Scholar 

  46. Höybye C, Grenbäck E, Rähn T et al (2001) Adrenocorticotropic hormone-producing pituitary tumors: 12- to 22-year follow-up after treatment with stereotactic radiosurgery. Neurosurgery 49:284–292. https://doi.org/10.1097/00006123-200108000-00008

    Article  PubMed  Google Scholar 

  47. Choi JY, Chang JH, Chang JW et al (2003) Radiological and Hormonal responses of functioning pituitary adenomas after γ knife radiosurgery. Yonsei Med J 44:602. https://doi.org/10.3349/ymj.2003.44.4.602

    Article  PubMed  Google Scholar 

  48. Vladyka V, Liščák R, Novotný J et al (2003) Radiation tolerance of functioning pituitary tissue in gamma knife surgery for pituitary adenomas. Neurosurgery 52:309–317. https://doi.org/10.1227/01.NEU.0000043709.53906.31

    Article  PubMed  Google Scholar 

  49. Kim M, Paeng S, Pyo S et al (2006) Gamma knife surgery for invasive pituitary macroadenoma. J Neurosurg 105:26–30. https://doi.org/10.3171/sup.2006.105.7.26

    Article  PubMed  Google Scholar 

  50. Albano L, Losa M, Barzaghi LR et al (2021) Gamma knife radiosurgery for pituitary tumors: a systematic review and meta-analysis. Cancers (Basel) 13:4998. https://doi.org/10.3390/cancers13194998

    Article  Google Scholar 

  51. Gittleman H, Ostrom QT, Farah PD et al (2014) Descriptive epidemiology of pituitary tumors in the United States, 2004–2009. J Neurosurg 121:527–535. https://doi.org/10.3171/2014.5.JNS131819

    Article  PubMed  Google Scholar 

  52. Castellanos LE, Gutierrez C, Smith T et al (2017) Epidemiology of common and uncommon adult pituitary tumors in the U.S. according to the, World Health Organization classification. Pituitary. https://doi.org/10.1007/s11102-021-01189-6

    Article  Google Scholar 

  53. Melmed S (2020) Pituitary-tumor endocrinopathies. N Engl J Med 382:937–950. https://doi.org/10.1056/NEJMra1810772

    Article  CAS  PubMed  Google Scholar 

  54. Khan DZ, Luengo I, Barbarisi S et al (2021) Automated operative workflow analysis of endoscopic pituitary surgery using machine learning: development and preclinical evaluation (IDEAL stage 0). J Neurosurg. https://doi.org/10.3171/2021.6.JNS21923

    Article  PubMed  Google Scholar 

  55. Ammirati M, Wei L, Ciric I (2013) Short-term outcome of endoscopic versus microscopic pituitary adenoma surgery: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 84:843–849. https://doi.org/10.1136/jnnp-2012-303194

    Article  PubMed  Google Scholar 

  56. Palmisciano P, Haider AS, Sabahi M et al (2021) Primary skull base chondrosarcomas: a systematic review. Cancers (Basel) 13:5960. https://doi.org/10.3390/cancers13235960

    Article  CAS  Google Scholar 

  57. Palmisciano P, El Ahmadieh TY, Haider AS et al (2021) Thalamic gliomas in adults: a systematic review of clinical characteristics, treatment strategies, and survival outcomes. J Neurooncol 155:215–224. https://doi.org/10.1007/s11060-021-03898-1

    Article  CAS  PubMed  Google Scholar 

  58. Lim CT, Korbonits MK (2018) Update on the clinicopathology of pituitary adenomas. Endocr Pract 24:473–488. https://doi.org/10.4158/EP-2018-0034

    Article  PubMed  Google Scholar 

  59. Oh JW, Sung KS, Moon JH et al (2018) Hypopituitarism after gamma knife surgery for postoperative nonfunctioning pituitary adenoma. J Neurosurg 129:47–54. https://doi.org/10.3171/2018.7.GKS181589

    Article  PubMed  Google Scholar 

  60. Nomikos P, Ladar C, Fahlbusch R, Buchfelder M (2004) Impact of primary surgery on pituitary function in patients with non-functioning pituitary adenomas ? A study on 721 patients. Acta Neurochir (Wien) 146:27–35. https://doi.org/10.1007/s00701-003-0174-3

    Article  CAS  Google Scholar 

  61. Nomikos P, Buchfelder M, Fahlbusch R (2005) The outcome of surgery in 668 patients with acromegaly using current criteria of biochemical ‘cure.’ Eur J Endocrinol 152:379–387. https://doi.org/10.1530/eje.1.01863

    Article  CAS  PubMed  Google Scholar 

  62. Fatemi N, Dusick JR, Mattozo C et al (2008) Pituitary hormonal loss and recovery after transsphenoidal adenoma removal. Neurosurgery 63:709–718

    Article  PubMed  Google Scholar 

  63. Estrada J, Boronat M, Mielgo M et al (1997) The long-term outcome of pituitary irradiation after unsuccessful transsphenoidal surgery in Cushing’s disease. N Engl J Med 336:172–177. https://doi.org/10.1056/NEJM199701163360303

    Article  CAS  PubMed  Google Scholar 

  64. Darzy KH (2009) Radiation-induced hypopituitarism after cancer therapy: who, how and when to test. Nat Clin Pract Endocrinol Metab 5:88–99. https://doi.org/10.1038/ncpendmet1051

    Article  CAS  PubMed  Google Scholar 

  65. Singh R, Didwania P, Lehrer EJ et al (2020) Stereotactic radiosurgery for acromegaly: an international systematic review and meta-analysis of clinical outcomes. J Neurooncol 148:401–418. https://doi.org/10.1007/s11060-020-03552-2

    Article  PubMed  Google Scholar 

  66. Castinetti F, Morange I, Dufour H et al (2009) Radiotherapy and radiosurgery in acromegaly. Pituitary 12:3–10. https://doi.org/10.1007/s11102-007-0078-y

    Article  PubMed  Google Scholar 

  67. Yamada S, Vidal S, Sano T et al (2003) Effect of gamma knife radiosurgery on a pituitary gonadotroph adenoma: a histologic, immunohistochemical and electron microscopic study. Pituitary 6:53–58. https://doi.org/10.1023/a:1026238028623

    Article  PubMed  Google Scholar 

  68. Palmisciano P, Haider AS, Nwagwu CD et al (2021) Bevacizumab vs laser interstitial thermal therapy in cerebral radiation necrosis from brain metastases: a systematic review and meta-analysis. J Neurooncol 154:13–23. https://doi.org/10.1007/s11060-021-03802-x

    Article  CAS  PubMed  Google Scholar 

  69. Pomeraniec IJ, Xu Z, Lee C-C et al (2021) Dose to neuroanatomical structures surrounding pituitary adenomas and the effect of stereotactic radiosurgery on neuroendocrine function: an international multicenter study. J Neurosurg. https://doi.org/10.3171/2021.3.JNS203812

    Article  PubMed  Google Scholar 

  70. Iwata H, Sato K, Nomura R et al (2016) Long-term results of hypofractionated stereotactic radiotherapy with cyberknife for growth hormone-secreting pituitary adenoma: evaluation by the Cortina consensus. J Neurooncol 128:267–275. https://doi.org/10.1007/s11060-016-2105-1

    Article  CAS  PubMed  Google Scholar 

  71. Barone F, Inserra F, Scalia G et al (2021) 68Ga-DOTATOC PET/CT follow up after single or hypofractionated gamma knife ICON radiosurgery for meningioma patients. Brain Sci 11:375. https://doi.org/10.3390/brainsci11030375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ferini G, Viola A, Valenti V et al (2022) Whole brain irradiation or stereotactic radiosurgery for five or more brain metastases (WHOBI-STER): a prospective comparative study of neurocognitive outcomes, level of autonomy in daily activities and quality of life. Clin Transl Radiat Oncol 32:52–58. https://doi.org/10.1016/j.ctro.2021.11.008

    Article  PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The study was conceptualized and supervised by G.E.U. and P.P. Material preparation, data collection and analysis were performed by P.P., C.O., M.O., G.F., G.S., A.S.H., O.B.A., and M.S. The first draft of the manuscript was written by P.P. and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Giuseppe E. Umana.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

As this is a literature review, ethics approval is not applicable.

Informed consent

As this is a literature review and no original data from new patients were collected, consent to participate is not applicable.

Consent for publication

As this is a literature review and no original data from new patients were collected, consent for publication is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 kb)

Supplementary file2 (DOCX 119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palmisciano, P., Ogasawara, C., Ogasawara, M. et al. Endocrine disorders after primary gamma knife radiosurgery for pituitary adenomas: A systematic review and meta-analysis. Pituitary 25, 404–419 (2022). https://doi.org/10.1007/s11102-022-01219-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-022-01219-x

Keywords

Navigation