Skip to main content

Advertisement

Log in

Targeted therapies in the medical management of craniopharyngioma

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Craniopharyngioma (CP) is an intracranial benign tumor that behaves aggressively due to its location, infiltration of the surrounding nervous tissue and high capacity for recurrence. Treatment of choice is surgery followed or not by radiotherapy. Recent advances in molecular biology techniques and the better understanding of the genetic alterations of the two histological types of CP have open new therapeutic perspectives with targeted drugs. Adamantinomatous CP (ACP) is associated with activating mutations of the CTNNB1 gene. Such mutations are accompanied by intracellular accumulation of β-catenin, an oncogenic protein that activates the intracellular Wnt/ β-catenin signaling pathway, which regulates the transcription of genes involved in cell proliferation. Therefore, the use of molecular therapies directed against the activation of the Wnt/ β-catenin pathway could be an attractive and promising therapeutic option in the management of ACPs. On the other hand, papillary CP (PCP) is associated with activating mutations in the BRAF gene. This gene encodes a BRAF protein that plays an important role in the intracellular mitogen-activated protein kinase (MAPK) signaling pathway, which also regulates cell proliferation. The use of BRAF inhibitors either in monotherapy or in combination with mitogen-activated protein kinase (MEK) inhibitors has demonstrated therapeutic efficacy in isolated clinical cases of relapsed PCPs. A preliminary report of a recent phase II clinical trial has shown a therapeutic response in 93.7% of patients with BRAF V600E -mutated PCP, with an 85% reduction in tumor size. In the present review we comment on the efficacy and safety of the different drugs being used in patients with PCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Muller HL, Merchant TE, Warmuth-Metz M, Martinez-Barbera JP, Puget S (2019) Craniopharyngioma. Nat Rev Dis Primers 5:75-019-0125-9

  2. Müller HL, Bruhnken G, Emser A, Faldum A, Etavard-Gorris N, Gebhardt U, Kolb R, Sörensen N (2005) Longitudinal study on quality of life in 102 survivors of childhood craniopharyngioma. Childs Nerv Syst 21:975–980

    Article  PubMed  Google Scholar 

  3. Nielsen EH, Feldt-Rasmussen U, Poulsgaard L, Kristensen LO, Astrup J, Jorgensen JO, Bjerre P, Andersen M, Andersen C, Jorgensen J, Lindholm J, Laurberg P (2011) Incidence of craniopharyngioma in Denmark (n = 189) and estimated world incidence of craniopharyngioma in children and adults. J Neurooncol 104:755–763

    Article  CAS  PubMed  Google Scholar 

  4. Zacharia BE, Bruce SS, Goldstein H, Malone HR, Neugut AI, Bruce JN (2012) Incidence, treatment and survival of patients with craniopharyngioma in the surveillance, epidemiology and end results program. Neuro Oncol 14:1070–1078

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zucchini S, Di Iorgi N, Pozzobon G, Pedicelli S, Parpagnoli M, Driul D, Matarazzo P, Baronio F, Crocco M, Giudica G, Partenope C, Nardini B, Ubertini G, Menardi R, Guzzetti C, Iughetti L, Aversa T, Di Mase R, Cassio A, Cianfarani S, Maghnie M, Tuli G, Loche S, Bruzzi P, Wasniewska M, Salerno M, Rutigliano I, Iezzi ML, Cherubini V, Grandone A, Faienza M, Tumini S, Baldoli C, Consales A, Genitori L, Marras CE, MIlanaccio C, Mortini P, Vindigni M, Zenga F, Zucchelli M Physiopathology of Growth Processes, Puberty Study Group of the Italian Society for Pediatric Endocrinology and Diabetology (2022) Management of childhood-onset craniopharyngioma in Italy: A multicenter seven year follow-up study of 145 patients. J Clin Endocrinol Metab 107:e1020–e1031

  6. Bartels U, Laperriere N, Bouffet E, Drake J (2012) Intracystic therapies for cystic craniopharyngioma in childhood. Front Endocrinol (Lausanne) 3:39

    Article  Google Scholar 

  7. Zhang S, Fang Y, Cai BW, Xu JG, You C (2016) Intracystic bleomycin for cystic craniopharyngiomas in children. Cochrane Database Syst Rev 7:CD008890

    PubMed  Google Scholar 

  8. Frio F, Solari D, Cavallo LM, Cappabianca P, Raverot G, Jouanneau E (2019) Ommaya Reservoir System for the Treatment of Cystic Craniopharyngiomas: Surgical Results in a Series of 11 Adult Patients and Review of the Literature. World Neurosurg 132:e869–e877

    Article  PubMed  Google Scholar 

  9. Gupta S, Bi WL, Giantini Larsen A, Al-Abdulmohsen S, Abedalthagafi M, Dunn IF (2018) Craniopharyngioma: a roadmap for scientific translation. Neurosurg Focus 44:E12

    Article  PubMed  Google Scholar 

  10. Alexandraki KI, Kaltsas GA, Karavitaki N, Grossman AB (2019) The Medical Therapy of Craniopharyngiomas: The Way Ahead. J Clin Endocrinol Metab 104:5751–5764

    Article  PubMed  Google Scholar 

  11. Rostami E, Casar-Borota O, Gudjonsson O (2020) Molecular Targets in Craniopharyngioma. In: Jouanneau E, Raverot G (eds) Adult Craniopharyngiomas. Springer Nature Switzerland AG, pp 209–218

  12. Hengartner AC, Prince E, Vijmasi T, Hankinson TC (2020) Adamantinomatous craniopharyngioma: moving toward targeted therapies. Neurosurg Focus 48:E7

    Article  PubMed  Google Scholar 

  13. Whelan R, Hengartner A, Folzenlogen Z, Prince E, Hankinson TC (2020) Adamantinomatous craniopharyngioma in the molecular age and the potential of targeted therapies: a review. Childs Nerv Syst 36:1635–1642

    Article  PubMed  Google Scholar 

  14. Apps JR, Martinez-Barbera JP (2021) Pathophysiology and genetics in craniopharyngioma. In: Honegger J, Reincke M, Petersenn S (eds) Pituitary Tumors. Academic Press, pp 53–66

  15. Gan HW (2021) Management of Craniopharyngiomas in the Era of Molecular Oncological Therapies: Not a Panacea. J Endocr Soc 5:bvab094

    Article  PubMed  PubMed Central  Google Scholar 

  16. Crotty TB, Scheithauer BW, Young WF Jr, Davis DH, Shaw EG, Miller GM, Burger PC (1995) Papillary craniopharyngioma: a clinicopathological study of 48 cases. J Neurosurg 83:206–214

    Article  CAS  PubMed  Google Scholar 

  17. Sekine S, Shibata T, Kokubu A, Morishita Y, Noguchi M, Nakanishi Y, Sakamoto M, Hirohashi S (2002) Craniopharyngiomas of adamantinomatous type harbor beta-catenin gene mutations. Am J Pathol 161:1997–2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brastianos PK, Taylor-Weiner A, Manley PE, Jones RT, Dias-Santagata D, Thorner AR, Lawrence MS, Rodriguez FJ, Bernardo LA, Schubert L, Sunkavalli A, Shillingford N, Calicchio ML, Lidov HG, Taha H, Martinez-Lage M, Santi M, Storm PB, Lee JY, Palmer JN, Adappa ND, Scott RM, Dunn IF, Laws ER Jr, Stewart C, Ligon KL, Hoang MP, Van Hummelen P, Hahn WC, Louis DN, Resnick AC, Kieran MW, Getz G, Santagata S (2014) Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas. Nat Genet 46:161–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brastianos PK, Shankar GM, Gill CM, Taylor-Weiner A, Nayyar N, Panka DJ, Sullivan RJ, Frederick DT, Abedalthagafi M, Jones PS, Dunn IF, Nahed BV, Romero JM, Louis DN, Getz G, Cahill DP, Santagata S, Curry WT Jr (2015) Dramatic Response of BRAF V600E Mutant Papillary Craniopharyngioma to Targeted Therapy. J Natl Cancer Inst 108:djv310 Barker FG,2nd. doi: https://doi.org/10.1093/jnci/djv310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aylwin SJ, Bodi I, Beaney R (2016) Pronounced response of papillary craniopharyngioma to treatment with vemurafenib, a BRAF inhibitor. Pituitary 19:544–546

    Article  PubMed  Google Scholar 

  21. Roque A, Odia Y (2017) BRAF-V600E mutant papillary craniopharyngioma dramatically responds to combination BRAF and MEK inhibitors. CNS Oncol 6:95–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rostami E, Witt Nyström P, Libard S, Wikström J, Casar-Borota O, Gudjonsson O (2017) Recurrent papillary craniopharyngioma with BRAFV600E mutation treated with neoadjuvant-targeted therapy. Acta Neurochir (Wien) 159:2217–2221

    Article  Google Scholar 

  23. Himes BT, Ruff MW, Van Gompel JJ, Park SS, Galanis E, Kaufmann TJ, Uhm JH (2018) Recurrent papillary craniopharyngioma with BRAF V600E mutation treated with dabrafenib: case report.J Neurosurg:1–5

  24. Juratli TA, Jones PS, Wang N, Subramanian M, Aylwin SJB, Odia Y, Rostami E, Gudjonsson O, Shaw BL, Cahill DP, Galanis E, Barker FG 2, Santagata S, Brastianos PK (2019) Targeted treatment of papillary craniopharyngiomas harboring BRAF V600E mutations. Cancer 125:2910–2914

  25. Bernstein A, Mrowczynski OD, Greene A, Ryan S, Chung C, Zacharia BE, Glantz M (2019) Dual BRAF/MEK therapy in BRAF V600E-mutated primary brain tumors: a case series showing dramatic clinical and radiographic responses and a reduction in cutaneous toxicity.J Neurosurg:1–6

  26. Rao M, Bhattacharjee M, Shepard S, Hsu S (2019) Newly diagnosed papillary craniopharyngioma with BRAF V600E mutation treated with single-agent selective BRAF inhibitor dabrafenib: a case report. Oncotarget 10:6038–6042

    Article  PubMed  PubMed Central  Google Scholar 

  27. Khaddour K, Chicoine MR, Huang J, Dahiya S, Ansstas G (2020) Successful Use of BRAF/MEK Inhibitors as a Neoadjuvant Approach in the Definitive Treatment of Papillary Craniopharyngioma. J Natl Compr Canc Netw 18:1590–1595

    Article  CAS  PubMed  Google Scholar 

  28. Di Stefano AL, Guyon D, Sejean K, Feuvret L, Villa C, Berzero G, Desforges Bullet V, Halimi E, Boulin A, Baussart B, Gaillard S (2020) Medical debulking with BRAF/MEK inhibitors in aggressive BRAF-mutant craniopharyngioma. Neurooncol Adv 2:vdaa141. doi: https://doi.org/10.1093/noajnl/vdaa141

    PubMed  PubMed Central  Google Scholar 

  29. Chik CL, van Landeghem FKH, Easaw JC, Mehta V (2021) Aggressive Childhood-onset Papillary Craniopharyngioma Managed With Vemurafenib, a BRAF Inhibitor. J Endocr Soc 5:bvab043. doi: https://doi.org/10.1210/jendso/bvab043

    Article  PubMed  PubMed Central  Google Scholar 

  30. Brastianos P, Kaliopi T, Erin GS, Michelle GE, Robins, Kaufmann TJ, Bota D, Annenelie, Reardon DA, Cohen A, De La Louis M, Ines LG, Jay CJ, Cahill DP, Shih H, Alice, Brown PD, Barker FG Galanis, Evanthia (2021) Alliance A071601: Phase II trial of BRAF/MEK inhibition in newly diagnosed papillary craniopharyngiomas. Journal of Clinical Oncology 39:2000–2000. doi: https://doi.org/10.1200/jco.2021.39.15_suppl.2000

  31. Cavalheiro S, Di Rocco C, Valenzuela S, Dastoli PA, Tamburrini G, Massimi L, Nicacio JM, Faquini IV, Ierardi DF, Silva NS, Pettorini BL, Toledo SR (2010) Craniopharyngiomas: intratumoral chemotherapy with interferon-alpha: a multicenter preliminary study with 60 cases. Neurosurg Focus 28:E12

    Article  PubMed  Google Scholar 

  32. Steinbok P, Hukin J (2010) Intracystic treatments for craniopharyngioma. Neurosurg Focus 28:E13

    Article  PubMed  Google Scholar 

  33. Hölsken A, Gebhardt M, Buchfelder M, Fahlbusch R, Blümcke I, Buslei R (2011) EGFR signaling regulates tumor cell migration in craniopharyngiomas. Clin Cancer Res 17:4367–4377

    Article  CAS  PubMed  Google Scholar 

  34. Stache C, Bils C, Fahlbusch R, Flitsch J, Buchfelder M, Stefanits H, Czech T, Gaipl U, Frey B, Buslei R, Hölsken A (2016) Drug priming enhances radiosensitivity of adamantinomatous craniopharyngioma via downregulation of survivin. Neurosurg Focus 41:E14

    Article  PubMed  Google Scholar 

  35. Apps JR, Carreno G, Gonzalez-Meljem JM, Haston S, Guiho R, Cooper JE, Manshaei S, Jani N, Hölsken A, Pettorini B, Beynon RJ, Simpson DM, Fraser HC, Hong Y, Hallang S, Stone TJ, Virasami A, Donson AM, Jones D, Aquilina K, Spoudeas H, Joshi AR, Grundy R, Storer LCD, Korbonits M, Hilton DA, Tossell K, Thavaraj S, Ungless MA, Gil J, Buslei R, Hankinson T, Hargrave D, Goding C, Andoniadou CL, Brogan P, Jacques TS, Williams HJ, Martinez-Barbera JP (2018) Tumour compartment transcriptomics demonstrates the activation of inflammatory and odontogenic programmes in human adamantinomatous craniopharyngioma and identifies the MAPK/ERK pathway as a novel therapeutic target. Acta Neuropathol 135:757–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Grob S, Mirsky DM, Donson AM, Dahl N, Foreman NK, Hoffman LM, Hankinson TC, Mulcahy Levy JM (2019) Targeting IL-6 Is a Potential Treatment for Primary Cystic Craniopharyngioma. Front Oncol 9:791

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dorris K (2021) Tocilizumab in children with adamantinomatous craniopharyngioma. ClinicalTrials.gov Identifier: NCT03970226. In:. https://clinicaltrials.gov/ct2/show/NCT03970226

  38. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  CAS  PubMed  Google Scholar 

  39. Kraus C, Liehr T, Hülsken J, Behrens J, Birchmeier W, Grzeschik KH, Ballhausen WG (1994) Localization of the human beta-catenin gene (CTNNB1) to 3p21: a region implicated in tumor development. Genomics 23:272–274

    Article  CAS  PubMed  Google Scholar 

  40. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275:1787–1790

    Article  CAS  PubMed  Google Scholar 

  41. Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P (1997) Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science 275:1790–1792

    Article  CAS  PubMed  Google Scholar 

  42. Satoh S, Daigo Y, Furukawa Y, Kato T, Miwa N, Nishiwaki T, Kawasoe T, Ishiguro H, Fujita M, Tokino T, Sasaki Y, Imaoka S, Murata M, Shimano T, Yamaoka Y, Nakamura Y (2000) AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet 24:245–250

    Article  CAS  PubMed  Google Scholar 

  43. Hölsken A, Buchfelder M, Fahlbusch R, Blümcke I, Buslei R (2010) Tumour cell migration in adamantinomatous craniopharyngiomas is promoted by activated Wnt-signalling. Acta Neuropathol 119:631–639

    Article  CAS  PubMed  Google Scholar 

  44. Jucá CEB, Colli LM, Martins CS, Campanini ML, Paixão B, Jucá RV, Saggioro FP, de Oliveira RS, Moreira AC, Machado HR, Neder L, Antonini SR, de Castro M (2018) Impact of the Canonical Wnt Pathway Activation on the Pathogenesis and Prognosis of Adamantinomatous Craniopharyngiomas. Horm Metab Res 50:575–581

    Article  CAS  PubMed  Google Scholar 

  45. Voronkov A, Krauss S (2013) Wnt/beta-catenin signaling and small molecule inhibitors. Curr Pharm Des 19:634–664

    Article  CAS  PubMed  Google Scholar 

  46. Krishnamurthy N, Kurzrock R (2018) Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat Rev 62:50–60

    Article  CAS  PubMed  Google Scholar 

  47. Cheltsov A, Nomura N, Yenugonda VM, Roper J, Mukthavaram R, Jiang P, Her NG, Babic I, Kesari S, Nurmemmedov E (2020) Allosteric inhibitor of β-catenin selectively targets oncogenic Wnt signaling in colon cancer. Sci Rep 10:8096-020-60784-y

  48. Lee KJ, Chang WL, Chen X, Valiyaveettil J, Ramirez-Alcantara V, Gavin E, Musiyenko A, Madeira da Silva L, Annamdevula NS, Leavesley SJ, Ward A, Mattox T, Lindsey AS, Andrews J, Zhu B, Wood C, Neese A, Nguyen A, Berry K, Maxuitenko Y, Moyer MP, Nurmemmedov E, Gorman G, Coward L, Zhou G, Keeton AB, Cooper HS, Clapper ML, Piazza GA (2021) Suppression of Colon Tumorigenesis in Mutant Apc Mice by a Novel PDE10 Inhibitor that Reduces Oncogenic β-Catenin. Cancer Prev Res (Phila) 14:995–1008

  49. Hu J, Wang Z, Chen J, Yu Z, Zhang J, Li W, Lin M, Yang X, Liu H (2021) Overexpression of ICAT Inhibits the Progression of Colorectal Cancer by Binding with β-Catenin in the Cytoplasm. Technol Cancer Res Treat 20:15330338211041253. doi: https://doi.org/10.1177/15330338211041253

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sun HI, Akgun E, Bicer A, Ozkan A, Bozkurt SU, Kurtkaya O, Koc DY, Pamir MN, Kilic T (2010) Expression of angiogenic factors in craniopharyngiomas: implications for tumor recurrence.Neurosurgery66:744 – 50; discussion 750

  51. Andoniadou CL, Gaston-Massuet C, Reddy R, Schneider RP, Blasco MA, Le Tissier P, Jacques TS, Pevny LH, Dattani MT, Martinez-Barbera JP (2012) Identification of novel pathways involved in the pathogenesis of human adamantinomatous craniopharyngioma. Acta Neuropathol 124:259–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ulfarsson E, Karström A, Yin S, Girnita A, Vasilcanu D, Thoren M, Kratz G, Hillman J, Axelson M, Larsson O, Girnita L (2005) Expression and growth dependency of the insulin-like growth factor I receptor in craniopharyngioma cells: a novel therapeutic approach. Clin Cancer Res 11:4674–4680

    Article  CAS  PubMed  Google Scholar 

  53. Li Q, You C, Liu L, Rao Z, Sima X, Zhou L, Xu J (2013) Craniopharyngioma cell growth is promoted by growth hormone (GH) and is inhibited by tamoxifen: involvement of growth hormone receptor (GHR) and IGF-1 receptor (IGF-1R). J Clin Neurosci 20:153–157

    Article  CAS  PubMed  Google Scholar 

  54. Gump JM, Donson AM, Birks DK, Amani VM, Rao KK, Griesinger AM, Kleinschmidt-DeMasters BK, Johnston JM, Anderson RC, Rosenfeld A, Handler M, Gore L, Foreman N, Hankinson TC (2015) Identification of targets for rational pharmacological therapy in childhood craniopharyngioma. Acta Neuropathol Commun 3:30–015–0211–5. doi: https://doi.org/10.1186/s40478-015-0211-5

  55. Ogawa Y, Watanabe M, Tominaga T (2015) Prognostic factors of craniopharyngioma with special reference to autocrine/paracrine signaling: underestimated implication of growth hormone receptor. Acta Neurochir (Wien) 157:1731–1740

    Article  Google Scholar 

  56. Ogawa Y, Kudo M, Watanabe M, Tominaga T (2020) Heterogeneity of Growth Hormone Receptor Expression in Craniopharyngioma-Implications for Surgical Strategy. World Neurosurg 138:89–92

    Article  PubMed  Google Scholar 

  57. Karavitaki N, Warner JT, Marland A, Shine B, Ryan F, Arnold J, Turner HE, Wass JA (2006) GH replacement does not increase the risk of recurrence in patients with craniopharyngioma. Clin Endocrinol (Oxf) 64:556–560

    Article  CAS  Google Scholar 

  58. Chung TT, Evanson J, Walker D, Akker SA, Besser GM, Monson JP, Grossman AB, Drake WM (2008) Safety of GH replacement in hypopituitary patients with nonirradiated pituitary and peripituitary tumours. Clin Endocrinol (Oxf) 68:965–969

    Article  CAS  Google Scholar 

  59. Olsson DS, Buchfelder M, Wiendieck K, Kremenevskaja N, Bengtsson B, Jakobsson KE, Jarfelt M, Johannsson G, Nilsson AG (2012) Tumour recurrence and enlargement in patients with craniopharyngioma with and without GH replacement therapy during more than 10 years of follow-up. Eur J Endocrinol 166:1061–1068

    Article  CAS  PubMed  Google Scholar 

  60. Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, Carotenuto A, De Feo G, Caponigro F, Salomon DS (2006) Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366:2–16

    Article  CAS  PubMed  Google Scholar 

  61. Lo HW, Hsu SC, Hung MC (2006) EGFR signaling pathway in breast cancers: from traditional signal transduction to direct nuclear translocalization. Breast Cancer Res Treat 95:211–218

    Article  CAS  PubMed  Google Scholar 

  62. Morgan EL, Scarth JA, Patterson MR, Wasson CW, Hemingway GC, Barba-Moreno D, Macdonald A (2021) E6-mediated activation of JNK drives EGFR signalling to promote proliferation and viral oncoprotein expression in cervical cancer. Cell Death Differ 28:1669–1687

    Article  CAS  PubMed  Google Scholar 

  63. Burotto M, Manasanch EE, Wilkerson J, Fojo T (2015) Gefitinib and erlotinib in metastatic non-small cell lung cancer: a meta-analysis of toxicity and efficacy of randomized clinical trials. Oncologist 20:400–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fornasier G, Francescon S, Baldo P (2018) An Update of Efficacy and Safety of Cetuximab in Metastatic Colorectal Cancer: A Narrative Review. Adv Ther 35:1497–1509

    Article  PubMed  Google Scholar 

  65. Wang Y, Deng J, Guo G, Tong A, Peng X, Chen H, Xu J, Liu Y, You C, Zhou L (2017) Clinical and prognostic role of annexin A2 in adamantinomatous craniopharyngioma. J Neurooncol 131:21–29

    Article  CAS  PubMed  Google Scholar 

  66. Whelan R, Prince E, Gilani A, Hankinson T (2020) The Inflammatory Milieu of Adamantinomatous Craniopharyngioma and Its Implications for Treatment. J Clin Med 9:519. doi: https://doi.org/10.3390/jcm9020519

    Article  CAS  PubMed Central  Google Scholar 

  67. Pettorini BL, Inzitari R, Massimi L, Tamburrini G, Caldarelli M, Fanali C, Cabras T, Messana I, Castagnola M, Di Rocco C (2010) The role of inflammation in the genesis of the cystic component of craniopharyngiomas. Childs Nerv Syst 26:1779–1784

    Article  PubMed  Google Scholar 

  68. Kumar A, Kasliwal MK, Suri A, Sharma BS (2010) Spontaneous asymptomatic rupture of cystic craniopharyngioma in a child: case report and review of the literature. J Child Neurol 25:1555–1558

    Article  PubMed  Google Scholar 

  69. Zhou J, Zhang C, Pan J, Chen L, Qi ST (2017) Interleukin–6 induces an epithelial–mesenchymal transition phenotype in human adamantinomatous craniopharyngioma cells and promotes tumor cell migration. Mol Med Rep 15:4123–4131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mori M, Takeshima H, Kuratsu J (2004) Expression of interleukin-6 in human craniopharyngiomas: a possible inducer of tumor-associated inflammation. Int J Mol Med 14:505–509

    CAS  PubMed  Google Scholar 

  71. Vidal S, Kovacs K, Lloyd RV, Meyer FB, Scheithauer BW (2002) Angiogenesis in patients with craniopharyngiomas: correlation with treatment and outcome. Cancer 94:738–745

    Article  PubMed  Google Scholar 

  72. Liu H, Liu Z, Li J, Li Q, You C, Xu J (2014) Relative quantitative expression of hypoxia-inducible factor 1α messenger ribonucleic acid in recurrent craniopharyngiomas. Neurol India 62:53–56

    Article  PubMed  Google Scholar 

  73. Xu J, Zhang S, You C, Wang X, Zhou Q (2006) Microvascular density and vascular endothelial growth factor have little correlation with prognosis of craniopharyngioma. Surg Neurol 66(Suppl 1):S30–S34

    Article  PubMed  Google Scholar 

  74. Yamasaki F, Kolakshyapati M, Takano M, Yonezawa U, Nishibuchi I, Imano N, Taguchi A, Onishi S, Amatya VJ, Takeshima Y, Nagata Y, Kurisu K, Sugiyama K (2019) Effect of bevacizumab against cystic components of brain tumors. Cancer Med 8:6519–6527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ott PA, Hodi FS, Robert C (2013) CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clin Cancer Res 19:5300–5309

    Article  CAS  PubMed  Google Scholar 

  76. Ito A, Kondo S, Tada K, Kitano S (2015) Clinical Development of Immune Checkpoint Inhibitors. Biomed Res Int 2015:605478

  77. Pisibon C, Ouertani A, Bertolotto C, Ballotti R, Cheli Y (2021) Immune Checkpoints in Cancers: From Signaling to the Clinic. Cancers (Basel) 13:4573. doi: https://doi.org/10.3390/cancers13184573

    Article  CAS  Google Scholar 

  78. Coy S, Rashid R, Lin JR, Du Z, Donson AM, Hankinson TC, Foreman NK, Manley PE, Kieran MW, Reardon DA, Sorger PK, Santagata S (2018) Multiplexed immunofluorescence reveals potential PD-1/PD-L1 pathway vulnerabilities in craniopharyngioma. Neuro Oncol 20:1101–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Borrill R, Cheesman E, Stivaros S, Kamaly-Asl ID, Gnanalingham K, Kilday JP (2019) Papillary craniopharyngioma in a 4-year-old girl with BRAF V600E mutation: a case report and review of the literature. Childs Nerv Syst 35:169–173

    Article  CAS  PubMed  Google Scholar 

  80. Yang I, Sughrue ME, Rutkowski MJ, Kaur R, Ivan ME, Aranda D, Barani IJ, Parsa AT (2010) Craniopharyngioma: a comparison of tumor control with various treatment strategies. Neurosurg Focus 28:E5

    Article  PubMed  Google Scholar 

  81. Brastianos. Priscilla K (2021) Vemurafenib and cobimetinib in treating patients with BRAFV600E mutation positive craniopharyngioma. ClinicalTrials.gov Identifier: NCT03224767. In:. https://clinicaltrials.gov/ct2/show/NCT03224767

  82. Lewis TS, Shapiro PS, Ahn NG (1998) Signal transduction through MAP kinase cascades. Adv Cancer Res 74:49–139

    Article  CAS  PubMed  Google Scholar 

  83. Peyssonnaux C, Eychène A (2001) The Raf/MEK/ERK pathway: new concepts of activation. Biol Cell 93:53–62

    Article  CAS  PubMed  Google Scholar 

  84. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  CAS  PubMed  Google Scholar 

  85. Pakneshan S, Salajegheh A, Smith RA, Lam AK (2013) Clinicopathological relevance of BRAF mutations in human cancer. Pathology 45:346–356

    Article  CAS  PubMed  Google Scholar 

  86. Larkin SJ, Preda V, Karavitaki N, Grossman A, Ansorge O (2014) BRAF V600E mutations are characteristic for papillary craniopharyngioma and may coexist with CTNNB1-mutated adamantinomatous craniopharyngioma. Acta Neuropathol 127:927–929

    Article  PubMed  PubMed Central  Google Scholar 

  87. Sood S, Jayachandiran R, Pandey S (2021) Current Advancements and Novel Strategies in the Treatment of Metastatic Melanoma. Integr Cancer Ther 20:1534735421990078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Halle BR, Johnson DB (2021) Defining and Targeting BRAF Mutations in Solid Tumors. Curr Treat Options Oncol 22:30–021-00827-2

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Iglesias.

Ethics declarations

Conflict of interest

The author has no conflict of interest and financial support in relation to the present manuscript.

Research involving human and/or animal participants

No.

Informed consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iglesias, P. Targeted therapies in the medical management of craniopharyngioma. Pituitary 25, 383–392 (2022). https://doi.org/10.1007/s11102-022-01212-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-022-01212-4

Keywords

Navigation