Skip to main content

Advertisement

Log in

Transcriptome profiling of insulin sensitive tissues from GH deficient mice following GH treatment

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Purpose

Most studies that have examined the transcriptional response to GH have been performed with a single tissue. Thus, the current study performed RNASeq across three insulin-sensitive tissues of GH-treated GH deficient (GHKO) mice.

Methods

GHKO mice were injected with recombinant human GH (hGH) or vehicle daily for 5 days and adipose, liver, and muscle tissues were collected 4 h after the final injection. RNA was isolated from the tissues and sequenced. Genes that were differentially expressed between GH and vehicle treatments were further analyzed. Enrichment analysis and topology-aware pathway analysis were performed.

Results

GHKO mice treated with hGH had expected phenotypic alterations, with increased body, fat, fluid, liver, and muscle mass, and increased serum IGF-1 and insulin. 55 Genes were differentially expressed in all three tissues, including the canonical GH targets Igf1, Igfals, and Cish. Enrichment analysis confirmed the canonical GH response in select tissues, such as cell proliferation, metabolism, and fibrosis. The JAK/STAT pathway was the only pathway significantly altered in all three tissues.

Conclusions

As expected, GH caused expression changes of many known target genes, although new candidate GH targets were identified. Liver and muscle appear to be more GH sensitive than adipose tissue due to the larger number of DEG and pathways significantly altered, but adipose still has a characteristic GH response. The diversity of changes uncovered in all three tissues after 5 days of GH treatment highlights the multiplicity of GH’s effects in its target tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Upon request.

Code availability

Upon request.

References

  1. Houssay BA, Foglia VG, Smyth FS, Rietti CT, Houssay AB (1942) The hypophysis and secretion of insulin. J Exp Med 75(5):547–566. https://doi.org/10.1084/jem.75.5.547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vila G, Jorgensen JOL, Luger A, Stalla GK (2019) Insulin resistance in patients with acromegaly. Front Endocrinol (Lausanne) 10:509. https://doi.org/10.3389/fendo.2019.00509

    Article  Google Scholar 

  3. Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, Wei M, Madia F, Cheng CW, Hwang D, Martin-Montalvo A, Saavedra J, Ingles S, de Cabo R, Cohen P, Longo VD (2011) Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci Transl Med 3(70):70ra13. https://doi.org/10.1126/scitranslmed.3001845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yakar S, Liu JL, Stannard B, Butler A, Accili D, Sauer B, LeRoith D (1999) Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc Natl Acad Sci USA 96(13):7324–7329. https://doi.org/10.1073/pnas.96.13.7324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stiedl P, McMahon R, Blaas L, Stanek V, Svinka J, Grabner B, Zollner G, Kessler SM, Claudel T, Muller M, Mikulits W, Bilban M, Esterbauer H, Eferl R, Haybaeck J, Trauner M, Casanova E (2015) Growth hormone resistance exacerbates cholestasis-induced murine liver fibrosis. Hepatology 61(2):613–626. https://doi.org/10.1002/hep.27408

    Article  CAS  PubMed  Google Scholar 

  6. List EO, Berryman DE, Funk K, Jara A, Kelder B, Wang F, Stout MB, Zhi X, Sun L, White TA, LeBrasseur NK, Pirtskhalava T, Tchkonia T, Jensen EA, Zhang W, Masternak MM, Kirkland JL, Miller RA, Bartke A, Kopchick JJ (2014) Liver-specific GH receptor gene-disrupted (LiGHRKO) mice have decreased endocrine IGF-I, increased local IGF-I, and altered body size, body composition, and adipokine profiles. Endocrinology 155(5):1793–1805. https://doi.org/10.1210/en.2013-2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. List EO, Berryman DE, Ikeno Y, Hubbard GB, Funk K, Comisford R, Young JA, Stout MB, Tchkonia T, Masternak MM, Bartke A, Kirkland JL, Miller RA, Kopchick JJ (2015) Removal of growth hormone receptor (GHR) in muscle of male mice replicates some of the health benefits seen in global GHR−/− mice. Aging 7(7):500–512. https://doi.org/10.18632/aging.100766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Householder LA, Comisford R, Duran-Ortiz S, Lee K, Troike K, Wilson C, Jara A, Harberson M, List EO, Kopchick JJ, Berryman DE (2018) Increased fibrosis: a novel means by which GH influences white adipose tissue function. Growth Horm IGF Res 39:45–53. https://doi.org/10.1016/j.ghir.2017.12.010

    Article  CAS  PubMed  Google Scholar 

  9. Benencia F, Harshman S, Duran-Ortiz S, Lubbers ER, List EO, Householder L, Al-Naeeli M, Liang X, Welch L, Kopchick JJ, Berryman DE (2015) Male bovine GH transgenic mice have decreased adiposity with an adipose depot-specific increase in immune cell populations. Endocrinology 156(5):1794–1803. https://doi.org/10.1210/en.2014-1794

    Article  CAS  PubMed  Google Scholar 

  10. List EO, Berryman DE, Buchman M, Jensen EA, Funk K, Duran-Ortiz S, Qian Y, Young JA, Slyby J, McKenna S, Kopchick JJ (2019) GH knockout mice have increased subcutaneous adipose tissue with decreased fibrosis and enhanced insulin sensitivity. Endocrinology 160(7):1743–1756. https://doi.org/10.1210/en.2019-00167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. List EO, Basu R, Duran-Ortiz S, Krejsa J, Jensen EA (2020) Mouse models of growth hormone deficiency. Rev Endocr Metab Disord. https://doi.org/10.1007/s11154-020-09601-5

    Article  PubMed  Google Scholar 

  12. Stout MB, Swindell WR, Zhi X, Rohde K, List EO, Berryman DE, Kopchick JJ, Gesing A, Fang Y, Masternak MM (2015) Transcriptome profiling reveals divergent expression shifts in brown and white adipose tissue from long-lived GHRKO mice. OncoTarget 6(29):26702–26715. https://doi.org/10.18632/oncotarget.5760

    Article  PubMed  PubMed Central  Google Scholar 

  13. Duran-Ortiz S, Young JA, Jara A, Jensen EA, Basu R, List EO, Qian Y, Kopchick JJ, Berryman DE (2020) Differential gene signature in adipose tissue depots of growth hormone transgenic mice. J Neuroendocrinol. https://doi.org/10.1111/jne.12893

    Article  PubMed  PubMed Central  Google Scholar 

  14. Connerney J, Lau-Corona D, Rampersaud A, Waxman DJ (2017) Activation of male liver chromatin accessibility and STAT5-dependent gene transcription by plasma growth hormone pulses. Endocrinology 158(5):1386–1405. https://doi.org/10.1210/en.2017-00060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barclay JL, Nelson CN, Ishikawa M, Murray LA, Kerr LM, McPhee TR, Powell EE, Waters MJ (2011) GH-dependent STAT5 signaling plays an important role in hepatic lipid metabolism. Endocrinology 152(1):181–192. https://doi.org/10.1210/en.2010-0537

    Article  CAS  PubMed  Google Scholar 

  16. Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA (1998) Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev 19(3):225–268. https://doi.org/10.1210/edrv.19.3.0334

    Article  CAS  PubMed  Google Scholar 

  17. Hoyer KL, Hogild ML, List EO, Lee KY, Kissinger E, Sharma R, Erik Magnusson N, Puri V, Kopchick JJ, Jorgensen JOL, Jessen N (2020) The acute effects of growth hormone in adipose tissue is associated with suppression of antilipolytic signals. Physiol Rep 8(3):e14373. https://doi.org/10.14814/phy2.14373

    Article  PubMed  PubMed Central  Google Scholar 

  18. Clasen BF, Krusenstjerna-Hafstrom T, Vendelbo MH, Thorsen K, Escande C, Moller N, Pedersen SB, Jorgensen JO, Jessen N (2013) Gene expression in skeletal muscle after an acute intravenous GH bolus in human subjects: identification of a mechanism regulating ANGPTL4. J Lipid Res 54(7):1988–1997. https://doi.org/10.1194/jlr.P034520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. List EO, Berryman DE, Basu R, Buchman M, Funk K, Kulkarni P, Duran-Ortiz S, Qian Y, Jensen EA, Young JA, Yildirim G, Yakar S, Kopchick JJ (2020) The effects of 20-kDa human placental GH in male and female GH-deficient mice: an improved human GH? Endocrinology. https://doi.org/10.1210/endocr/bqaa097

    Article  PubMed  PubMed Central  Google Scholar 

  20. List EO, Berryman DE, Wright-Piekarski J, Jara A, Funk K, Kopchick JJ (2013) The effects of weight cycling on lifespan in male C57BL/6J mice. Int J Obes (Lond) 37(8):1088–1094. https://doi.org/10.1038/ijo.2012.203

    Article  CAS  Google Scholar 

  21. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, Vilo J (2019) g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res 47(W1):W191–W198. https://doi.org/10.1093/nar/gkz369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. The Gene Ontology Resource (2019) 20 Years and still GOing strong. Nucleic Acids Res 47(D1):D330–D338. https://doi.org/10.1093/nar/gky1055

    Article  CAS  Google Scholar 

  23. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30. https://doi.org/10.1093/nar/28.1.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, Sidiropoulos K, Cook J, Gillespie M, Haw R, Loney F, May B, Milacic M, Rothfels K, Sevilla C, Shamovsky V, Shorser S, Varusai T, Weiser J, Wu G, Stein L, Hermjakob H, Eustachio P (2020) The reactome pathway knowledgebase. Nucleic Acids Res 48(D1):D498–D503. https://doi.org/10.1093/nar/gkz1031

    Article  CAS  PubMed  Google Scholar 

  25. Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, Reuter I, Chekmenev D, Krull M, Hornischer K, Voss N, Stegmaier P, Lewicki-Potapov B, Saxel H, Kel AE, Wingender E (2006) TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res 34(Database issue):D108–D110. https://doi.org/10.1093/nar/gkj143

    Article  CAS  PubMed  Google Scholar 

  26. Huang HY, Lin YC, Li J, Huang KY, Shrestha S, Hong HC, Tang Y, Chen YG, Jin CN, Yu Y, Xu JT, Li YM, Cai XX, Zhou ZY, Chen XH, Pei YY, Hu L, Su JJ, Cui SD, Wang F, Xie YY, Ding SY, Luo MF, Chou CH, Chang NW, Chen KW, Cheng YH, Wan XH, Hsu WL, Lee TY, Wei FX, Huang HD (2020) miRTarBase 2020: updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res 48(D1):D148–D154. https://doi.org/10.1093/nar/gkz896

    Article  CAS  PubMed  Google Scholar 

  27. Giurgiu M, Reinhard J, Brauner B, Dunger-Kaltenbach I, Fobo G, Frishman G, Montrone C, Ruepp A (2019) CORUM: the comprehensive resource of mammalian protein complexes-2019. Nucleic Acids Res 47(D1):D559–D563. https://doi.org/10.1093/nar/gky973

    Article  CAS  PubMed  Google Scholar 

  28. Kohler S, Carmody L, Vasilevsky N, Jacobsen JOB, Danis D, Gourdine JP, Gargano M, Harris NL, Matentzoglu N, McMurry JA, Osumi-Sutherland D, Cipriani V, Balhoff JP, Conlin T, Blau H, Baynam G, Palmer R, Gratian D, Dawkins H, Segal M, Jansen AC, Muaz A, Chang WH, Bergerson J, Laulederkind SJF, Yuksel Z, Beltran S, Freeman AF, Sergouniotis PI, Durkin D, Storm AL, Hanauer M, Brudno M, Bello SM, Sincan M, Rageth K, Wheeler MT, Oegema R, Lourghi H, Della Rocca MG, Thompson R, Castellanos F, Priest J, Cunningham-Rundles C, Hegde A, Lovering RC, Hajek C, Olry A, Notarangelo L, Similuk M, Zhang XA, Gomez-Andres D, Lochmuller H, Dollfus H, Rosenzweig S, Marwaha S, Rath A, Sullivan K, Smith C, Milner JD, Leroux D, Boerkoel CF, Klion A, Carter MC, Groza T, Smedley D, Haendel MA, Mungall C, Robinson PN (2019) Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources. Nucleic Acids Res 47(D1):D1018–D1027. https://doi.org/10.1093/nar/gky1105

    Article  CAS  PubMed  Google Scholar 

  29. Slenter DN, Kutmon M, Hanspers K, Riutta A, Windsor J, Nunes N, Melius J, Cirillo E, Coort SL, Digles D, Ehrhart F, Giesbertz P, Kalafati M, Martens M, Miller R, Nishida K, Rieswijk L, Waagmeester A, Eijssen LMT, Evelo CT, Pico AR, Willighagen EL (2018) WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research. Nucleic Acids Res 46(D1):D661–D667. https://doi.org/10.1093/nar/gkx1064

    Article  CAS  PubMed  Google Scholar 

  30. Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim JS, Kim CJ, Kusanovic JP, Romero R (2009) A novel signaling pathway impact analysis. Bioinformatics 25(1):75–82. https://doi.org/10.1093/bioinformatics/btn577

    Article  CAS  PubMed  Google Scholar 

  31. Wauthier V, Sugathan A, Meyer RD, Dombkowski AA, Waxman DJ (2010) Intrinsic sex differences in the early growth hormone responsiveness of sex-specific genes in mouse liver. Mol Endocrinol 24(3):667–678. https://doi.org/10.1210/me.2009-0454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. al-Shawi R, Wallace H, Harrison S, Jones C, Johnson D, Bishop JO (1992) Sexual dimorphism and growth hormone regulation of a hybrid gene in transgenic mice. Mol Endocrinol 6(2):181–190. https://doi.org/10.1210/mend.6.2.1373818

    Article  CAS  PubMed  Google Scholar 

  33. Beynon RJ, Hurst JL (2003) Multiple roles of major urinary proteins in the house mouse, Mus domesticus. Biochem Soc Trans 31(Pt 1):142–146. https://doi.org/10.1042/bst0310142

    Article  CAS  PubMed  Google Scholar 

  34. Gahr SA, Vallejo RL, Weber GM, Shepherd BS, Silverstein JT, Rexroad CE III (2008) Effects of short-term growth hormone treatment on liver and muscle transcriptomes in rainbow trout (Oncorhynchus mykiss). Physiol Genomics 32(3):380–392. https://doi.org/10.1152/physiolgenomics.00142.2007

    Article  CAS  PubMed  Google Scholar 

  35. Jiang Y, Kang YJ (2004) Metallothionein gene therapy for chemical-induced liver fibrosis in mice. Mol Ther 10(6):1130–1139. https://doi.org/10.1016/j.ymthe.2004.08.011

    Article  CAS  PubMed  Google Scholar 

  36. Chen YH, Du BQ, Zheng ZJ, Xiang GM, Liu XB, Mai G (2012) Effect of recombinant human growth hormone and interferon gamma on hepatic collagen synthesis and proliferation of hepatic stellate cells in cirrhotic rats. Hepatobiliary Pancreat Dis Int 11(3):294–301. https://doi.org/10.1016/s1499-3872(12)60163-5

    Article  CAS  PubMed  Google Scholar 

  37. Summermatter S, Bouzan A, Pierrel E, Melly S, Stauffer D, Gutzwiller S, Nolin E, Dornelas C, Fryer C, Leighton-Davies J, Glass DJ, Fournier B (2017) Blockade of Metallothioneins 1 and 2 increases skeletal muscle mass and strength. Mol Cell Biol. https://doi.org/10.1128/MCB.00305-16

    Article  PubMed  PubMed Central  Google Scholar 

  38. Miegueu P, Cianflone K, Richard D, St-Pierre DH (2013) Effect of secretin on preadipocyte, differentiating and mature adipocyte functions. Int J Obes (Lond) 37(3):366–374. https://doi.org/10.1038/ijo.2012.73

    Article  CAS  Google Scholar 

  39. Sekar R, Chow BK (2014) Lipolytic actions of secretin in mouse adipocytes. J Lipid Res 55(2):190–200. https://doi.org/10.1194/jlr.M038042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Afroze S, Meng F, Jensen K, McDaniel K, Rahal K, Onori P, Gaudio E, Alpini G, Glaser SS (2013) The physiological roles of secretin and its receptor. Ann Transl Med 1(3):29. https://doi.org/10.3978/j.issn.2305-5839.2012.12.01

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bogazzi F, Lombardi M, Strata E, Aquaro G, Di Bello V, Cosci C, Sardella C, Talini E, Martino E (2008) High prevalence of cardiac hypertophy without detectable signs of fibrosis in patients with untreated active acromegaly: an in vivo study using magnetic resonance imaging. Clin Endocrinol (Oxf) 68(3):361–368. https://doi.org/10.1111/j.1365-2265.2007.03047.x

    Article  Google Scholar 

  42. Doessing S, Heinemeier KM, Holm L, Mackey AL, Schjerling P, Rennie M, Smith K, Reitelseder S, Kappelgaard AM, Rasmussen MH, Flyvbjerg A, Kjaer M (2010) Growth hormone stimulates the collagen synthesis in human tendon and skeletal muscle without affecting myofibrillar protein synthesis. J Physiol 588(Pt 2):341–351. https://doi.org/10.1113/jphysiol.2009.179325

    Article  CAS  PubMed  Google Scholar 

  43. Granot I, Halevy O, Hurwitz S, Pines M (1991) Growth hormone and insulin-like growth factor I regulate collagen gene expression and extracellular collagen in cultures of avian skin fibroblasts. Mol Cell Endocrinol 80(1–3):1–9. https://doi.org/10.1016/0303-7207(91)90137-h

    Article  CAS  PubMed  Google Scholar 

  44. Longobardi S, Keay N, Ehrnborg C, Cittadini A, Rosen T, Dall R, Boroujerdi MA, Bassett EE, Healy ML, Pentecost C, Wallace JD, Powrie J, Jorgensen JO, Sacca L (2000) Growth hormone (GH) effects on bone and collagen turnover in healthy adults and its potential as a marker of GH abuse in sports: a double blind, placebo-controlled study. The GH-2000 Study Group. J Clin Endocrinol Metab 85(4):1505–1512. https://doi.org/10.1210/jcem.85.4.6551

    Article  CAS  PubMed  Google Scholar 

  45. Wilson VJ, Rattray M, Thomas CR, Moreland BH, Schulster D (1995) Growth hormone increases IGF-I, collagen I and collagen III gene expression in dwarf rat skeletal muscle. Mol Cell Endocrinol 115(2):187–197. https://doi.org/10.1016/0303-7207(95)03690-3

    Article  PubMed  Google Scholar 

  46. Yokota F, Arima H, Hirano M, Uchikawa T, Inden Y, Nagatani T, Oiso Y (2010) Normalisation of plasma growth hormone levels improved cardiac dysfunction due to acromegalic cardiomyopathy with severe fibrosis. BMJ Case Rep. https://doi.org/10.1136/bcr.12.2009.2559

    Article  PubMed  PubMed Central  Google Scholar 

  47. Posner BI (1975) Polypeptide hormone receptors: characteristics and applications. Can J Physiol Pharmacol 53(5):689–703. https://doi.org/10.1139/y75-097

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported in part by a Grant (Grant for Growth Innovation, GGI) from Merck KGaA, Darmstadt, Germany, by NIH Grant #AG059779, Ohio University Heritage College of Osteopathic Medicine, The Diabetes Institute at Ohio University, and the State of Ohio’s Eminent Scholar Program that includes a gift from Milton and Lawrence Goll.

Author information

Authors and Affiliations

Authors

Contributions

EL, DB, and JK contributed to the study conception and design. Material preparation, data collection and analysis were performed by JY, MB, CK, SB, and SD-O. The first draft of the manuscript was written by JY and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Edward O. List.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Ethical approval

All animal procedures were approved by the Ohio University Institutional Animal Care and Use Committee and complied with federal, state, and local laws.

Informed consent

N/A.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

(DOCX 76 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Young, J.A., Buchman, M., Duran-Ortiz, S. et al. Transcriptome profiling of insulin sensitive tissues from GH deficient mice following GH treatment. Pituitary 24, 384–399 (2021). https://doi.org/10.1007/s11102-020-01118-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-020-01118-z

Keywords

Navigation