Skip to main content

Advertisement

Log in

Radiomics model predicts granulation pattern in growth hormone-secreting pituitary adenomas

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Purpose

To investigate whether radiomic features from magnetic resonance image (MRI) can predict the granulation pattern of growth hormone (GH)-secreting pituitary adenoma patients.

Methods

Sixty-nine pathologically proven acromegaly patients (densely granulated [DG] = 50, sparsely granulated [SG] = 19) were included. Radiomic features (n = 214) were extracted from contrast-enhancing and total tumor portions from T2-weighted (T2) MRIs. Imaging features were selected using a least absolute shrinkage and selection operator (LASSO) logistic regression model with fivefold cross-validation. Diagnostic performance for predicting granulation pattern was compared with that for qualitative T2 signal intensity assessment and T2 relative signal intensity (rSI) using the area under the receiver operating characteristics curve (AUC).

Results

Four significant radiomic features from the contrast-enhancing tumor (1 from shape, 1 from first order feature, and 2 from second order features) were selected by LASSO for model construction. The radiomics model showed an AUC, accuracy, sensitivity, and specificity of 0.834 (95% confidence interval [CI] 0.738–0.930), 73.7%, 74.0%, and 73.9%, respectively. The radiomics model showed significantly better performance than the model using qualitative T2 signal intensity assessment (AUC 0.597 [95% CI 0.447–0.747], P = 0.009) and T2 rSI (AUC 0.647 [95% CI 0.523–0.759], P = 0.037).

Conclusion

Radiomic features may be useful biomarkers to differentiate granulation pattern of GH-secreting pituitary adenoma patients, and showed better performance than qualitative assessment or rSI evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are not publicly available due its proprietary nature, but are available from the corresponding author for validation of our results upon request with permission from all of the co-authors.

Code availability

The code for statistical analysis performed by statistical software R (version 4.0.1; R Foundation for Statistical Computing, Vienna, Austria) is available from the corresponding author for validation of our results upon request with permission from all of the co-authors.

References

  1. Melmed S (2009) Acromegaly pathogenesis and treatment. J Clin Invest 119(11):3189–3202. https://doi.org/10.1172/jci39375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Katznelson L, Laws ER Jr, Melmed S, Molitch ME, Murad MH, Utz A, Wass JA (2014) Acromegaly: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 99(11):3933–3951. https://doi.org/10.1210/jc.2014-2700

    Article  CAS  PubMed  Google Scholar 

  3. Colao A, Grasso LFS, Giustina A, Melmed S, Chanson P, Pereira AM, Pivonello R (2019) Acrom Nat Rev Dis Primers 5(1):20. https://doi.org/10.1038/s41572-019-0071-6

    Article  Google Scholar 

  4. Carlsen SM, Lund-Johansen M, Schreiner T, Aanderud S, Johannesen O, Svartberg J, Cooper JG, Hald JK, Fougner SL, Bollerslev J (2008) Preoperative octreotide treatment in newly diagnosed acromegalic patients with macroadenomas increases cure short-term postoperative rates: a prospective, randomized trial. J Clin Endocrinol Metab 93(8):2984–2990. https://doi.org/10.1210/jc.2008-0315

    Article  CAS  PubMed  Google Scholar 

  5. Mao ZG, Zhu YH, Tang HL, Wang DY, Zhou J, He DS, Lan H, Luo BN, Wang HJ (2010) Preoperative lanreotide treatment in acromegalic patients with macroadenomas increases short-term postoperative cure rates: a prospective, randomised trial. Eur J Endocrinol 162(4):661–666. https://doi.org/10.1530/eje-09-0908

    Article  CAS  PubMed  Google Scholar 

  6. Mercado M, Borges F, Bouterfa H, Chang TC, Chervin A, Farrall AJ, Patocs A, Petersenn S, Podoba J, Safari M, Wardlaw J (2007) A prospective, multicentre study to investigate the efficacy, safety and tolerability of octreotide LAR (long-acting repeatable octreotide) in the primary therapy of patients with acromegaly. Clin Endocrinol 66(6):859–868. https://doi.org/10.1111/j.1365-2265.2007.02825.x

    Article  CAS  Google Scholar 

  7. Melmed S, Cook D, Schopohl J, Goth MI, Lam KS, Marek J (2010) Rapid and sustained reduction of serum growth hormone and insulin-like growth factor-1 in patients with acromegaly receiving lanreotide Autogel therapy: a randomized, placebo-controlled, multicenter study with a 52 week open extension. Pituitary 13(1):18–28. https://doi.org/10.1007/s11102-009-0191-1

    Article  CAS  PubMed  Google Scholar 

  8. Bakhtiar Y, Hirano H, Arita K, Yunoue S, Fujio S, Tominaga A, Sakoguchi T, Sugiyama K, Kurisu K, Yasufuku-Takano J, Takano K (2010) Relationship between cytokeratin staining patterns and clinico-pathological features in somatotropinomae. Eur J Endocrinol 163(4):531–539. https://doi.org/10.1530/eje-10-0586

    Article  CAS  PubMed  Google Scholar 

  9. Bhayana S, Booth GL, Asa SL, Kovacs K, Ezzat S (2005) The implication of somatotroph adenoma phenotype to somatostatin analog responsiveness in acromegaly. J Clin Endocrinol Metab 90(11):6290–6295. https://doi.org/10.1210/jc.2005-0998

    Article  CAS  PubMed  Google Scholar 

  10. Paragliola RM, Corsello SM, Salvatori R (2017) Somatostatin receptor ligands in acromegaly: clinical response and factors predicting resistance. Pituitary 20(1):109–115. https://doi.org/10.1007/s11102-016-0768-4

    Article  CAS  PubMed  Google Scholar 

  11. Obari A, Sano T, Ohyama K, Kudo E, Qian ZR, Yoneda A, Rayhan N, Mustafizur Rahman M, Yamada S (2008) Clinicopathological features of growth hormone-producing pituitary adenomas: difference among various types defined by cytokeratin distribution pattern including a transitional form. Endocr Pathol 19(2):82–91. https://doi.org/10.1007/s12022-008-9029-Z

    Article  PubMed  Google Scholar 

  12. Heck A, Emblem KE, Casar-Borota O, Bollerslev J, Ringstad G (2016) Quantitative analyses of T2-weighted MRI as a potential marker for response to somatostatin analogs in newly diagnosed acromegaly. Endocrine 52(2):333–343. https://doi.org/10.1007/s12020-015-0766-8

    Article  CAS  PubMed  Google Scholar 

  13. Heck A, Ringstad G, Fougner SL, Casar-Borota O, Nome T, Ramm-Pettersen J, Bollerslev J (2012) Intensity of pituitary adenoma on T2-weighted magnetic resonance imaging predicts the response to octreotide treatment in newly diagnosed acromegaly. Clin Endocrinol 77(1):72–78. https://doi.org/10.1111/j.1365-2265.2011.04286.x

    Article  CAS  Google Scholar 

  14. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278(2):563–577. https://doi.org/10.1148/radiol.2015151169

    Article  PubMed  Google Scholar 

  15. Park YW, Han K, Ahn SS, Choi YS, Chang JH, Kim SH, Kang SG, Kim EH, Lee SK (2018) Whole-tumor histogram and texture analyses of DTI for evaluation of IDH1-MUTATION and 1p/19q-codeletion status in World Health Organization Grade II Gliomas. Am J Neuroradiol 39(4):693–698. https://doi.org/10.3174/ajnr.A5569

    Article  CAS  PubMed  Google Scholar 

  16. Park YW, Choi YS, Ahn SS, Chang JH, Kim SH, Lee SK (2019) Radiomics MRI phenotyping with machine learning to predict the grade of lower-grade gliomas: a study focused on nonenhancing tumors. Korean J Radiol 20(9):1381–1389. https://doi.org/10.3348/kjr.2018.0814

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kickingereder P, Burth S, Wick A, Gotz M, Eidel O, Schlemmer HP, Maier-Hein KH, Wick W, Bendszus M, Radbruch A, Bonekamp D (2016) Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology 280(3):880–889. https://doi.org/10.1148/radiol.2016160845

    Article  PubMed  Google Scholar 

  18. Zhang S, Song G, Zang Y, Jia J, Wang C, Li C, Tian J, Dong D, Zhang Y (2018) Non-invasive radiomics approach potentially predicts non-functioning pituitary adenomas subtypes before surgery. Eur Radiol 28(9):3692–3701. https://doi.org/10.1007/s00330-017-5180-6

    Article  PubMed  Google Scholar 

  19. Peng A, Dai H, Duan H, Chen Y, Huang J, Zhou L, Chen L (2020) A machine learning model to precisely immunohistochemically classify pituitary adenoma subtypes with radiomics based on preoperative magnetic resonance imaging. Eur J Radiol 125:108892. https://doi.org/10.1016/j.ejrad.2020.108892

    Article  PubMed  Google Scholar 

  20. Fan Y, Liu Z, Hou B, Li L, Liu X, Liu Z, Wang R, Lin Y, Feng F, Tian J, Feng M (2019) Development and validation of an MRI-based radiomic signature for the preoperative prediction of treatment response in patients with invasive functional pituitary adenoma. Eur J Radiol 121:108647. https://doi.org/10.1016/j.ejrad.2019.108647

    Article  PubMed  Google Scholar 

  21. Fan Y, Jiang S, Hua M, Feng S, Feng M, Wang R (2019) Machine learning-based radiomics predicts radiotherapeutic response in patients with acromegaly. Front Endocrinol 10:588

    Article  Google Scholar 

  22. Lopes MBS (2017) The 2017 World Health Organization classification of tumors of the pituitary gland: a summary. Acta Neuropathol 134(4):521–535. https://doi.org/10.1007/s00401-017-1769-8

    Article  CAS  PubMed  Google Scholar 

  23. Cancer IAfRo (2017) WHO classification of tumours of endocrine organs, 4 edn. IARC

  24. Vallières M, Freeman CR, Skamene SR, El Naqa I (2015) A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol 60(14):5471–5496. https://doi.org/10.1088/0031-9155/60/14/5471

    Article  PubMed  Google Scholar 

  25. Avants BB, Tustison N, Song G (2009) Advanced normalization tools (ANTS). Insight J 2(365):1–35

    Google Scholar 

  26. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin JC, Pieper S, Aerts H (2017) Computational radiomics system to decode the radiographic phenotype. Can Res 77(21):e104–e107. https://doi.org/10.1158/0008-5472.Can-17-0339

    Article  Google Scholar 

  27. Zwanenburg A, Leger S, Vallières M, Löck S (2016) Image biomarker standardisation initiative. arXiv preprint arXiv:1612.07003

  28. Hepp T, Schmid M, Gefeller O, Waldmann E, Mayr A (2016) Approaches to regularized regression: a comparison between gradient boosting and the lasso. Methods Inf Med 55(5):422–430. https://doi.org/10.3414/me16-01-0033

    Article  PubMed  Google Scholar 

  29. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44(3):837–845

    Article  CAS  Google Scholar 

  30. Limkin EJ, Sun R, Dercle L, Zacharaki EI, Robert C, Reuzé S, Schernberg A, Paragios N, Deutsch E, Ferté C (2017) Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology. Ann Oncol 28(6):1191–1206. https://doi.org/10.1093/annonc/mdx034

    Article  CAS  PubMed  Google Scholar 

  31. Hagiwara A, Inoue Y, Wakasa K, Haba T, Tashiro T, Miyamoto T (2003) Comparison of growth hormone-producing and non-growth hormone-producing pituitary adenomas: imaging characteristics and pathologic correlation. Radiology 228(2):533–538. https://doi.org/10.1148/radiol.2282020695

    Article  PubMed  Google Scholar 

  32. Yamada S, Aiba T, Sano T, Kovacs K, Shishiba Y, Sawano S, Takada K (1993) Growth hormone-producing pituitary adenomas: correlations between clinical characteristics and morphology. Neurosurgery 33(1):20–27. https://doi.org/10.1227/00006123-199307000-00003

    Article  CAS  PubMed  Google Scholar 

  33. Horvath E, Kovacs K (2006) Pathology of acromegaly. Neuroendocrinology 83(3–4):161–165. https://doi.org/10.1159/000095524

    Article  CAS  PubMed  Google Scholar 

  34. Shen M, Zhang Q, Liu W, Wang M, Zhu J, Ma Z, He W, Li S, Shou X, Li Y, Zhang Z, Ye H, He M, Lu B, Yao Z, Lu Y, Qiao N, Ye Z, Zhang Y, Yang Y, Zhao Y, Wang Y (2016) Predictive value of T2 relative signal intensity for response to somatostatin analogs in newly diagnosed acromegaly. Neuroradiology 58(11):1057–1065. https://doi.org/10.1007/s00234-016-1728-4

    Article  PubMed  Google Scholar 

  35. Alhambra-Expósito MR, Ibáñez-Costa A, Moreno-Moreno P, Rivero-Cortés E, Vázquez-Borrego MC, Blanco-Acevedo C, Toledano-Delgado Á, Lombardo-Galera MS, Vallejo-Casas JA, Gahete MD, Castaño JP, Gálvez MA, Luque RM (2018) Association between radiological parameters and clinical and molecular characteristics in human somatotropinomas. Sci Rep 8(1):6173. https://doi.org/10.1038/s41598-018-24260-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brzana J, Yedinak CG, Gultekin SH, Delashaw JB, Fleseriu M (2013) Growth hormone granulation pattern and somatostatin receptor subtype 2A correlate with postoperative somatostatin receptor ligand response in acromegaly: a large single center experience. Pituitary 16(4):490–498. https://doi.org/10.1007/s11102-012-0445-1

    Article  CAS  PubMed  Google Scholar 

  37. Ugga L, Cuocolo R, Solari D, Guadagno E, D'Amico A, Somma T, Cappabianca P, Del Basso de Caro ML, Cavallo LM, Brunetti A (2019) Prediction of high proliferative index in pituitary macroadenomas using MRI-based radiomics and machine learning. Neuroradiology 61(12):1365–1373

  38. Cuocolo R, Ugga L, Solari D, Corvino S, D'Amico A, Russo D, Cappabianca P, Cavallo LM, Elefante A (2020) Prediction of pituitary adenoma surgical consistency: radiomic data mining and machine learning on T2-weighted MRI. Neuroradiology. https://doi.org/10.1007/s00234-020-02502-z

    Article  PubMed  Google Scholar 

  39. Fan Y, Chai Y, Li K, Fang H, Mou A, Feng S, Feng M, Wang R (2020) Non-invasive and real-time proliferative activity estimation based on a quantitative radiomics approach for patients with acromegaly: a multicenter study. J Endocrinol Invest 43(6):755–765. https://doi.org/10.1007/s40618-019-01159-7

    Article  CAS  PubMed  Google Scholar 

  40. Gatenby RA, Grove O, Gillies RJ (2013) Quantitative imaging in cancer evolution and ecology. Radiology 269(1):8–15. https://doi.org/10.1148/radiol.13122697

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fan M, Cheng H, Zhang P, Gao X, Zhang J, Shao G, Li L (2018) DCE-MRI texture analysis with tumor subregion partitioning for predicting Ki-67 status of estrogen receptor-positive breast cancers. J Magn Reson Imaging 48(1):237–247. https://doi.org/10.1002/jmri.25921

    Article  PubMed  Google Scholar 

  42. Fan M, Zhang P, Wang Y, Peng W, Wang S, Gao X, Xu M, Li L (2019) Radiomic analysis of imaging heterogeneity in tumours and the surrounding parenchyma based on unsupervised decomposition of DCE-MRI for predicting molecular subtypes of breast cancer. Eur Radiol 29(8):4456–4467. https://doi.org/10.1007/s00330-018-5891-3

    Article  PubMed  Google Scholar 

  43. Xu H, Lv W, Feng H, Du D, Yuan Q, Wang Q, Dai Z, Yang W, Feng Q, Ma J, Lu L (2019) Subregional radiomics analysis of PET/CT imaging with intratumor partitioning: application to prognosis for nasopharyngeal carcinoma. Mol Imag Biol. https://doi.org/10.1007/s11307-019-01439-x

    Article  Google Scholar 

  44. Kocak B, Durmaz ES, Kadioglu P, Polat Korkmaz O, Comunoglu N, Tanriover N, Kocer N, Islak C, Kizilkilic O (2019) Predicting response to somatostatin analogues in acromegaly: machine learning-based high-dimensional quantitative texture analysis on T2-weighted MRI. Eur Radiol 29(6):2731–2739. https://doi.org/10.1007/s00330-018-5876-2

    Article  PubMed  Google Scholar 

  45. Galm BP, Buckless C, Swearingen B, Torriani M, Klibanski A, Bredella MA, Tritos NA (2020) MRI texture analysis in acromegaly and its role in predicting response to somatostatin receptor ligands. Pituitary 23(3):212–222. https://doi.org/10.1007/s11102-019-01023-0

    Article  CAS  PubMed  Google Scholar 

  46. O'Connor JP, Rose CJ, Waterton JC, Carano RA, Parker GJ, Jackson A (2015) Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res 21(2):249–257. https://doi.org/10.1158/1078-0432.Ccr-14-0990

    Article  CAS  PubMed  Google Scholar 

  47. Inoshita N, Nishioka H (2018) The 2017 WHO classification of pituitary adenoma: overview and comments. Brain Tumor Pathol 35(2):51–56. https://doi.org/10.1007/s10014-018-0314-3

    Article  CAS  PubMed  Google Scholar 

  48. Varma S, Simon R (2006) Bias in error estimation when using cross-validation for model selection. BMC Bioinform 7:91. https://doi.org/10.1186/1471-2105-7-91

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1I1A1A01071648).

Author information

Authors and Affiliations

Authors

Contributions

YWP and EHK designed the study. CRK, EHK, SHK, EJL, and SHK managed the patient recruitment and data acquisition. YK, SSA, and S-KL designed the radiomics pipeline and performed the radiomics analyses. YWP wrote the first draft of the manuscript and performed statistical analysis. EHK provided the critical revision of the manuscript. SHK supervised the manuscript. All authors contributed to and approved the final manuscript.

Corresponding author

Correspondence to Eui Hyun Kim.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethics approval

The Yonsei University Institutional Review Board waived the need for obtaining informed patient consent for this retrospective study. All methods were carried out in accordance with relevant guidelines and regulation.

Consent to participate

Informed consent was waived by the IRB due to the determination of minimal risk of the study.

Consent for publication

All authors agreed for publication of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, Y.W., Kang, Y., Ahn, S.S. et al. Radiomics model predicts granulation pattern in growth hormone-secreting pituitary adenomas. Pituitary 23, 691–700 (2020). https://doi.org/10.1007/s11102-020-01077-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-020-01077-5

Keywords

Navigation