Skip to main content

Advertisement

Log in

Radiological and endocrinological evaluations with grading of hypothalamic perifocal edema caused by craniopharyngiomas

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Introduction

Hypophysial and hypothalamic dysfunction caused by craniopharyngioma is a serious problem despite the progress of surgical approaches and techniques. Perifocal edema induced by craniopharyngioma could be speculated as a potential factor resulting in pre- and post-operative hypophysial and hypothalamic dysfunction, as well as, their anatomical involvement.

Methods

Medical records of 54 patients with craniopharyngioma were retrospectively reviewed. The edema was characterized by a hyperintense area in magnetic resonance imaging, being classified into no edema (group A), only adjacent to the tumor (group B), and extending to the internal capsule or the optic tract (group C). Age, sex, tumor diameter, presence of cyst, hydrocephalus, intracranial pressure (ICP) elevation, visual function impairment, hypopituitarism, diabetes insipidus, memory disturbance, and obesity were investigated.

Results

The occurrence rate of edema was found more frequently in adults (73.7%) than in children (25.0%). The peritumoral edema grading system had an excellent correlation with the degree of hypothalamic involvement graded by the Puget’s system. Pre-operative ICP elevation was significantly detected in group C when compared with the other groups. In adults patients, group C was significantly associated with the occurrence of hydrocephalus both in pre- and post-operatively. Pre- and post-operative hypothalamic dysfunction, including diabetes insipidus, memory disturbance, and obesity, were highest in group C.

Conclusion

Hypothalamic dysfunctions greatly influence the quality of daily living following craniopharyngioma surgery. The grading of perifocal edema’s extension could be a new index suggesting pre- and post-operative hypothalamic dysfunction caused by craniopharyngioma in addition to their anatomical involvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BMI:

Body mass index

CT:

Computed tomography

DI:

Diabetes insipidus

FLAIR:

Fluid attenuated inversion recovery

GTR:

Gross total removal

MRI:

Magnetic resonance imaging

WI:

Weighted image

References

  1. Lanksch WR (1982) The diagnosis of brain edema by computed tomogramphy. In: Hartmann A, Brock M (eds) Treatment of cerebral edema. Springer, Berlin, pp 43–80

    Chapter  Google Scholar 

  2. Higashi S, Yamashita J, Fujisawa H, Yamamoto Y, Kadoya M (1990) “Moustache” appearance in craniopharyngiomas: unique magnetic resonance imaging and computed tomogramphic findings of perifocal edema. Neurosurgery 27:993–996

    Article  CAS  PubMed  Google Scholar 

  3. Nagahata M, Hosoya T, Kayama T, Yamaguchi K (1998) Edema along the optic tract: useful MR finding for the diagnosis of craniopharyngiomas. AJNR Am J Neuroradiol 19:1753–1757

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Saeki N, Uchino Y, Murai H, Kubota M, Isobe K, Uno T, Sunami K, Yamaura A (2003) MR imaging study of edema-like change along the optic tract in patients with pituitary region tumor. AJNR Am J Neuroradiol 24:336–342

    PubMed  PubMed Central  Google Scholar 

  5. Youl BD, Plant GT, Stevens JM, Kendall BE, Symon L, Crockard HA (1990) Three cases of craniopharyngioma showing optic tract hypersignal on MRI. Neurology 40:1416–1419

    Article  CAS  PubMed  Google Scholar 

  6. Saeki N, Murai H, Kubota M, Fujimoto N (2001) Oedema along the optic tract due to pituitary metastasis. Br J Neurosurg 15:523–526

    Article  CAS  PubMed  Google Scholar 

  7. Sklar EM, Schaz NJ, Glaser JS, Sternau I, Seffo F (2000) Optic tract edema in a meningioma of the tuberculum sellae. AJNR Am J Neuroradiol 21:1661–1663

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Adachi M, Hosoya T, Haku T, Yamaguchi K (1998) Dilated Virchow-Robin spaces: MRI pathological study. Neuroradiology 40:27–30

    Article  CAS  PubMed  Google Scholar 

  9. Bradbury MW, Cserr HF, Westrop RJ (1981) Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol 240:F329–F336

    CAS  PubMed  Google Scholar 

  10. Hoffman HJ, De Silva M, Humphereys RP, Drake JM, Smith ML, Blaser SI (1992) Aggressive surgical management of craniopahryngioma in children. J Neurosurg 76:47–52

    Article  CAS  PubMed  Google Scholar 

  11. Lapras C, Patet JD, Mottolese C, Charbi S, Lapras C Jr (1987) Craniopharyngiomas in childhood: analysis of 42 cases. Prog Exp Tumor Res 30:350–358

    Article  CAS  PubMed  Google Scholar 

  12. Yasargil MG, Curcic M, Kis M, Siegenthaler G, Teddy PJ, Roth P (1990) Total removal of craniopharyngiomas. Approaches and long-term results in 144 patients. J Neurosurg 73:3–11

    Article  CAS  PubMed  Google Scholar 

  13. Carpentieri SC, Waber DP, Scott RM, Goumnrova LC, Kieran MW, Cohen LE, Kim F, Billett AL, Tarbell NJ, Pomeroy SL (2001) Memory deficits among children with craniopharyngiomas. Neurosurgery 49:1053–1058

    CAS  PubMed  Google Scholar 

  14. Hayward R (1999) The present and future management of childhood craniopharyngioma. Childs Nerv Syst 15:764–769

    Article  CAS  PubMed  Google Scholar 

  15. Puget S, Garnett M, Wray A, Grill J, Habrand JL, Bodaert N, Zerah M, Bezerra M, Renier D, Pierrr-Karn A, Sainte-Rose C (2007) Pediatric craniopharyngiomas: classification and treatment according to the degree of hypothalamic involvement. J Neurosurg 106(I Suppl Pediatrics):3–12

    PubMed  Google Scholar 

  16. Van Effenterre R, Boch AL (2002) Craniopharyngiomas inadults and children; a study of 122 surgical cases. J Neurosurg 97:3–11

    Article  PubMed  Google Scholar 

  17. Mortini P, Ganliardi F, Balio M, Spina A, Parlangeli A, Falini A, Losa M (2016) Magnetic resonance imaging as predictor of functional outcome in craniopharyngiomas. Endocrine 51:148–162

    Article  CAS  PubMed  Google Scholar 

  18. Van Gompel JJ, Nippoldt TB, Higgins DM, Meyer FB (2007) Magnetic resonance imaging-guided hypothalamic compression in surgically treated adult craniopharyngiomas determining obesity. Neurosurg Focus 28:E3

    Article  Google Scholar 

  19. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820

    Article  PubMed  Google Scholar 

  20. Dastoli PA, Nicácio JM, Silva NS, Capellano AM, Toledo SR, Ierardi D, Cavalheiro S (2011) Cystic craniopharyngioma: intratumoral chemotherapy with alpha interferon. Arq Neuropsiquiatr 69:50–55

    Article  PubMed  Google Scholar 

  21. Hensen J, Henig A, Fuhlbusch R, Meyer M, Boehnert M, Buchfelder M (1999) Prevalence, predictors and patterns of postoperative polyuria and hyponatremia in the immediate course after transsphenoidal surgery for pituitary adenomas. Clin Endocrinol 50:431–439

    Article  CAS  Google Scholar 

  22. Fischer EG, Welch K, Shillito J Jr, Winston KR, Tarbell NJ (1990) Craniopharyngiomas in children. Long-term effects of conservative surgical procedures combined with radiation therapy. J Neurosurg 73:534–540

    Article  CAS  PubMed  Google Scholar 

  23. Mortini P, Ganliardi F, Boari N, Roberti F, Caputy AJ (2013) Surgical strategies and modern therapeutic options in the treatment of craniopharyngiomas. Crit Rev Oncol Hematol 88:514–529

    Article  PubMed  Google Scholar 

  24. Merchant TE, Kiehna EN, Sanford RA, Mulhern RK, Thompson SJ, Wilson NW, Lusting RH, Kim LE (2002) Craniopharyngioma: the St. Jude Children’s Research Hospital experience 1984-2001. Int J Radiat Oncol Biol Phys 53:533–542

    Article  PubMed  Google Scholar 

  25. Poretti A, Grotzer MA, Ribi K, Schonle E, Boltshauser E (2004) Outcome of craniopharyngioma in children: long-term complications and quality of life. Dev Med Child Neurol 46:220–229

    Article  PubMed  Google Scholar 

  26. Svein HJ (1965) Surgical experiences with craniopharyngiomas. J Neurosurg 23:148–155

    Article  Google Scholar 

  27. Stevens JM, Ruiz JS, Kendall BE (1983) Observations on peritumoral oedema in meningioma. Part II; mechanisms of oedema production. Neuroradiology 25:125–131

    Article  CAS  PubMed  Google Scholar 

  28. Hayashi Y, Kita D, Fukui I, Sasagawa Y, Oishi M, Okajima M, Tachibana O, Nakada M (2016) Pediatric symptomatic Rathke cleft cyst compared with cystic craniopharyngioma. Childs Nerv Syst 32:1625–1632

    Article  PubMed  Google Scholar 

  29. Taylor M, Couto-Silva AC, Adan L, Trivin C, Sainte-Rose C, Zerah M, Valteau-Couanet D, Doz F, Chalumeau M, Brauner R (2012) Hypothalamic-pituitary lesions in pediatric patients: endocrine symptoms often precede neuro-ophthalmic presenting symptoms. J Pediatr 161:855–863

    Article  PubMed  Google Scholar 

  30. Tan H, Yang W, Wu C, Liu B, Lu H, Wang H, Yan H (2017) Assessment of the role of intracranial hypertension and stress on hippocampal cell apoptosis and hypothalamic-pituitary dysfunction after TBI. Sci Rep 19:3805

    Article  CAS  Google Scholar 

  31. Herman JP, Seroogy K (2006) Hypothalamic-pituitary-adrenal axis, glucocorticoids, and neurologic disease. Neurol Clin 24:461–481

    Article  PubMed  Google Scholar 

  32. Chen X, Zhao Z, Chai Y, Luo L, Jiang R, Dong J, Zhang J (2013) Stress-dose hydrocortisone reduces critical illness-related corticosteroid insufficiency associated with severe traumatic brain injury in rats. Crit Care 17:R241

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chen X, Zhao Z, Chai Y, Luo L, Jiang R, Zhang J (2014) The incidence of critical-illness-related-corticosteroid-insufficiency is associated with severity of traumatic brain injury in adult rats. J Neurol Sci 15:93–100

    Article  CAS  Google Scholar 

  34. Prieto R, Pascual JM, Rosdolsky M, Castro-Dufourny I, Carrasco R, Strauss S, Barrios L (2016) Craniopharyngioma adherence: a comprehensive topographical categorization and outcome-related risk stratification model based on the methodical examination of 500 tumors. Neurosurg. Focus 41:E13

    Article  PubMed  Google Scholar 

  35. Hussy N, Deleuze C, Desarménien MG, Moos FC (2000) Osmotic regulation of neuronal activity: a new role for taurine and glial cells in a hypothalamic neuroendocrine structure. Prog Neurobiol 62:113–134

    Article  CAS  PubMed  Google Scholar 

  36. Shi XE, Wu B, Zhou ZQ, Fan T, Zhang YL (2006) Microsurgical treatment of craniopharyngiomas: report of 284 patients. Chin Med J (Engl) 119:1653–1663

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiko Hayashi.

Ethics declarations

Conflict of interest

There is no conflict of interest in this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, Y., Sasagawa, Y., Oishi, M. et al. Radiological and endocrinological evaluations with grading of hypothalamic perifocal edema caused by craniopharyngiomas. Pituitary 22, 146–155 (2019). https://doi.org/10.1007/s11102-019-00945-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-019-00945-z

Keywords

Navigation