Advertisement

Pituitary

pp 1–9 | Cite as

Posterior pituitary dysfunction following traumatic brain injury: review

  • Roxana Maria TudorEmail author
  • Christopher J. Thompson
Article

Abstract

Neurohypophysial dysfunction is common in the first days following traumatic brain injury (TBI), manifesting as dysnatremia in approximately 1 in 4 patients. Both hyponatremia and hypernatremia can impair recovery from TBI and in the case of hypernatremia, there is a significant association with excess mortality. Hyponatremia secondary to syndrome of inappropriate antidiuretic hormone secretion (SIAD) is the commonest electrolyte disturbance following TBI. Acute adrenocorticotropic hormone (ACTH)/cortisol deficiency occurs in 10–15% of TBI patients and can present with a biochemical picture identical to SIAD. For this reason, exclusion of glucocorticoid deficiency is of particular importance in post-TBI SIAD. Cerebral salt wasting is a rare cause of hyponatremia following TBI. Hyponatremia predisposes to seizures, reduced consciousness, and prolonged hospital stay. Diabetes insipidus (DI) occurs in 20% of cases following TBI; where diminished consciousness is present, appropriate fluid replacement of renal water losses is occasionally inadequate, leading to hypernatremia. Hypernatremia is strongly predictive of mortality following TBI. Most cases of DI are transient, but persistent DI is also predictive of mortality, irrespective of plasma sodium concentration. Persistent DI may herald rising intracranial pressure due to coning. True adipsic DI is rare following TBI, but patients are vulnerable to severe hypernatremic dehydration, exacerbation of neurologic deficits and hypothalamic complications, therefore clinicians should be aware of this possible variant of DI.

Keywords

Traumatic brain injury (TBI) Posterior pituitary dysfunction Hyponatremia Syndrome of inappropriate antidiuretic hormone secretion (SIAD/SIADH) Diabetes insipidus (DI) Adipsic diabetes insipidus 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This paper does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Hiatt HH, Lowis S (1957) Diabetes insipidus following head injury. AMA Arch Intern Med 100(1):143–146CrossRefGoogle Scholar
  2. 2.
    Schwartz WB, Bennett W, Curelop S et al (1957) A syndrome of renal sodium loss and hyponatremia probably resulting from inappropriate secretion of antidiuretic hormone. Am J Med 23(4):529–542CrossRefGoogle Scholar
  3. 3.
    Carter NW, Rector FC Jr, Seldin DW (1961) Hyponatremia in cerebral disease resulting from the inappropriate secretion of antidiuretic hormone. N Engl J Med 264:67–72.  https://doi.org/10.1056/NEJM196101122640203 CrossRefPubMedGoogle Scholar
  4. 4.
    Hannon MJ, Finucane FM, Sherlock M et al (2012) Disorders of Water Homeostasis in Neurosurgical Patients. J Clin Endocrinol Metab 97(5):1423–1433.  https://doi.org/10.1210/jc.2011-3201 CrossRefGoogle Scholar
  5. 5.
    Cuesta M, Hannon MJ, Thompson CJ (2016) Diagnosis and treatment of hyponatraemia in neurosurgical patients. Endocrinol Nutr 63(5):230–238.  https://doi.org/10.1016/j.endonu.2015.12.007 CrossRefPubMedGoogle Scholar
  6. 6.
    Hannon MJ, Crowley RK, Behan LA et al (2013) Acute glucocorticoid deficiency and diabetes insipidus are common after acute traumatic brain injury and predict mortality. J Clin Endocrinol Metab 98(8):3229–3237.  https://doi.org/10.1210/jc.2013-1555 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Vedantam A, Robertson CS, Gopinath SP (2017) Morbidity and mortality associated with hypernatremia in patients with severe traumatic brain injury. Neurosurg Focus 43(5):E2.  https://doi.org/10.3171/2017.7.FOCUS17418 CrossRefPubMedGoogle Scholar
  8. 8.
    Hoffman H, Jalal MS, Chin LS (2018) Effect of hypernatremia on outcomes after severe traumatic brain injury: a nationwide inpatient sample analysis. Word Neurosurg 118:e880–e886.  https://doi.org/10.1016/j.wneu.2018.07.089 CrossRefGoogle Scholar
  9. 9.
    Sherlock M, O’Sullivan E, Agha A et al (2009) Incidence and pathophysiology of severe hyponatraemia in neurosurgical patients. Postgrad Med J 85(1002):171–175.  https://doi.org/10.1136/pgmj.2008.072819 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Agha A, Thornton E, O’Kelly P et al (2004) Posterior pituitary dysfunction after traumatic brain injury. J Clin Endocrinol Metab 89:5987–5992.  https://doi.org/10.1210/jc.2004-1058 CrossRefGoogle Scholar
  11. 11.
    Capatina C, Paluzzi A, Mitchell R et al (2015) Diabetes insipidus after traumatic brain injury. J Clin Med 4(7):1448–1462.  https://doi.org/10.3390/jcm4071448 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kleindienst A, Hannon MJ, Buchfelder M et al (2016) Hyponatremia in neurotrauma: the role of vasopressin. J Neurotrauma 33(7):615–624.  https://doi.org/10.1089/neu.2015.3981 CrossRefPubMedGoogle Scholar
  13. 13.
    Agha A, Rogers B, Mylotte D et al (2004) Neuroendocrine dysfunction in the acute phase of traumatic brain injury. Clin Endocrinol (Oxf) 60:584–591.  https://doi.org/10.1111/j.1365-2265.2004.02023.x CrossRefGoogle Scholar
  14. 14.
    Tanriverdi F, Senyurek H, Unluhizarci K et al (2006) High risk of hypopituitarism after traumatic brain injury: a prospective investigation of anterior pituitary function in the acute phase and 12 months after trauma. J Clin Endocrinol Metab 91:2105–2111.  https://doi.org/10.1210/jc.2005-2476 CrossRefPubMedGoogle Scholar
  15. 15.
    Krahulik D, Zapletalova J, Frysak Z et al (2010) Dysfunction of hypothalamic-hypophysial axis after traumatic brain injury in adults. J Neurosurg 113:581–584.  https://doi.org/10.3171/2009.10.JNS09930 CrossRefPubMedGoogle Scholar
  16. 16.
    Bartter FC, Schwartz WB (1967) The syndrome of inappropriate secretion of antidiuretic hormone. Am J Med 42:790–806CrossRefGoogle Scholar
  17. 17.
    Verbalis JG (1989) Hyponatraemia. Baillieres Clin Endocrinol Metab 3(2):499–530CrossRefGoogle Scholar
  18. 18.
    Agha A, Rogers B, Sherlock M et al (2004) Anterior pituitary dysfunction in survivors of traumatic brain injury. J Clin Endocrinol Metab 89(10):4929–4936.  https://doi.org/10.1210/jc.2004-0511 CrossRefPubMedGoogle Scholar
  19. 19.
    Agha A, Sherlock M, Thompson CJ (2005) Post-traumatic hyponatraemia due to acute hypopituitarism. QJM 98(6):463–464.  https://doi.org/10.1093/qjmed/hci075 CrossRefPubMedGoogle Scholar
  20. 20.
    Bensalah M, Donaldson M, Aribi Y et al (2018) Cortisol evaluation during the acute phase of traumatic brain injury-A prospective study. Clin Endocrol (Oxf) 88(5):627–636.  https://doi.org/10.1111/cen.13562 CrossRefGoogle Scholar
  21. 21.
    Agha A, Sherlock M, Phillips J et al (2005) The natural history of post-traumatic neurohypophysial dysfunction. Eur J Endocrinol 152:371–377.  https://doi.org/10.1530/eje.1.01861 CrossRefPubMedGoogle Scholar
  22. 22.
    Agha A, Phillips J, O’Kelly P et al (2005) The natural history of post-traumatic hypopituitarism: implications for assessment and treatment. Am J Med 118(12):1416.  https://doi.org/10.1016/j.amjmed.2005.02.042 CrossRefPubMedGoogle Scholar
  23. 23.
    Peters JP, Welt LG, Sims EA et al (1950) A salt-wasting syndrome associated with cerebral disease. Trans Assoc Am Physicians 63:57–64PubMedGoogle Scholar
  24. 24.
    Yee AH, Burns JD, Wijdicks EF (2010) Cerebral salt wasting: pathophysiology, diagnosis, and treatment. Neurosurg Clin N Am 21(2):339–352.  https://doi.org/10.1016/j.nec.2009.10.011 CrossRefPubMedGoogle Scholar
  25. 25.
    Leonard J, Garrett RE, Salottolo K et al (2015) Cerebral salt wasting after traumatic brain injury: a review of the literature. Scand J Trauma Resusc Emerg Med 23:98.  https://doi.org/10.1186/s13049-015-0180-5 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Verbalis J, Goldsmith SR, Greenberg A et al (2013) Diagnosis, evaluation, and treatment of hyponatremia: expert panel recommendations. Am J Med 126(10 Suppl 1):S1–S42.  https://doi.org/10.1016/j.amjmed.2013.07.006 CrossRefGoogle Scholar
  27. 27.
    Bitew S, Imriano L, Miyawaki N et al (2009) More on salt wasting without cerebral disease: a response to saline infusion. Clin J Am Soc Nephrol 4(2):309–315.  https://doi.org/10.2215/CJN.02740608 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Revilla-Pacheco FR, Herrada-Pineda T, Loyo-Varela M et al (2005) Cerebral salt wasting syndrome in patients with aneurysmal subarachnoid hemorrhage. Neurol Res 27(4):418–422.  https://doi.org/10.1179/016164105X17152 CrossRefPubMedGoogle Scholar
  29. 29.
    Cerdà-Esteve M, Cuadrado-Godia E, Chillaron JJ et al (2008) Cerebral salt wasting syndrome: review. Eur J Intern Med 19(4):249–254.  https://doi.org/10.1016/j.ejim.2007.06.019 CrossRefPubMedGoogle Scholar
  30. 30.
    Ke C, Poon WS, Ng HK et al (2002) Impact of experimental acute hyponatremia on severe traumatic brain injury in rats: influences on injuries, permeability of blood-brain barrier, ultrastructural features, and aquaporin-4 expression. Exp Neurol 178(2):194–206CrossRefGoogle Scholar
  31. 31.
    Sterns RH (2018) Treatment of Severe Hyponatremia. Clin J Am Soc Nephrol 13(4):641–649.  https://doi.org/10.2215/CJN.10440917 CrossRefPubMedGoogle Scholar
  32. 32.
    Spasovski G, Vanholder R, Allolio B et al (2014) Clinical practice guideline on diagnosis and treatment of hyponatraemia. Eur J Endocrinol 170(3):G1–G47.  https://doi.org/10.1530/EJE-13-1020 CrossRefPubMedGoogle Scholar
  33. 33.
    Greenberg A, Verbalis JG, Amin AN et al (2015) Current treatment practice and outcomes. Report of the hyponatremia registry. Kidney Int 88(1):167–177.  https://doi.org/10.1038/ki.2015.4 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Rondon-Berrios H, Tandukar S, Mor MK et al (2018) Urea for the treatment of hyponatremia. Clin J Am Soc Nephrol Sep.  https://doi.org/10.2215/CJN.04020318.CrossRefGoogle Scholar
  35. 35.
    Pierrakos C, Taccone FS, Decaux G et al (2012) Urea for treatment of acute SIADH in patients with subarachnoid hemorrhage: a single-center experience. Ann Intensive Care 2:13.  https://doi.org/10.1186/2110-5820-2-13 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Nagler EV, Haller MC, Van Biesen W et al (2018) Interventions for chronic non-hypovolaemic hypotonic hyponatraemia. Cochrane Database Syst Rev 6:CD010965.  https://doi.org/10.1002/14651858.CD010965.pub2 CrossRefPubMedGoogle Scholar
  37. 37.
    Sterns RH, Silver SM, Hix JK (2015) Urea for hyponatremia? Kidney Int 87(2):268–270.  https://doi.org/10.1038/ki.2014.320 CrossRefPubMedGoogle Scholar
  38. 38.
    Onuigbo MAC, Agbasi N (2016) Severe symptomatic acute hyponatremia in traumatic brain injury responded very rapidly to a single 15 mg dose of oral tolvaptan; a Mayo Clinic Health System hospital experience—need for caution with tolvaptan in younger patients with preserved renal function. J Renal Inj Prev 6(1):26–29.  https://doi.org/10.15171/jrip.2017.05 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Benvenga S, CampennI A, Ruggeri RM et al (2000) Hypopituitarism secondary to head trauma. J Clin Endocrinol Metab 85(4):1353–1361.  https://doi.org/10.1210/jcem.85.4.6506 CrossRefPubMedGoogle Scholar
  40. 40.
    Boughey JC, Yost MJ, Bynoe RP (2004) Diabetes insipidus in the head-injured patient. Am Surg 70(6):500–503PubMedGoogle Scholar
  41. 41.
    Hadjizacharia P, Beale EO, Inaba K et al (2008) Acute diabetes insipidus in severe head injury: a prospective study. J Am Coll Surg 207(4):477–484.  https://doi.org/10.1016/j.jamcollsurg.2008.04.017 CrossRefPubMedGoogle Scholar
  42. 42.
    Karali V, Massa E, Vassiliadou G et al (2008) Evaluation of development of diabetes insipidus in the early phase following traumatic brain injury in critically ill patients. Crit Care 12(Suppl 2): P130.  https://doi.org/10.1186/cc6351 CrossRefPubMedCentralGoogle Scholar
  43. 43.
    Seckl J, Dunger D (1989) Postoperative diabetes insipidus. BMJ 298(6665):2–3CrossRefGoogle Scholar
  44. 44.
    Baylis PH, Thompson CJ (1988) Osmoregulation of vasopressin secretion and thirst in health and disease. Clin Endocrinol (Oxf) 29(5):549–576CrossRefGoogle Scholar
  45. 45.
    Ranasinghe AM, Bonser RS (2011) Endocrine changes in brain death and transplantation. Best Pract Res Clin Endocrinol Metab 25(5):799–812.  https://doi.org/10.1016/j.beem.2011.03.003 CrossRefPubMedGoogle Scholar
  46. 46.
    Ghigo E, Masel B, Aimaretti G et al (2005) Consensus guidelines on screening for hypopituitarism following traumatic brain injury. Brain Inj 19(9):711–724.  https://doi.org/10.1080/02699050400025315 CrossRefPubMedGoogle Scholar
  47. 47.
    Han MJ, Kim DH, Kim YH et al (2015) A case of osmotic demyelination presenting with severe hypernatremia. Electrolyte Blood Press 13(1):30–36.  https://doi.org/10.3174/ajnr.A3392 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Naik KR, Saroja AO (2010) Seasonal postpartum hypernatremic encephalopathy with osmotic extrapontine myelinolysis and rhabdomyolysis. J Neurol Sci 291(1–2):5–11.  https://doi.org/10.1016/j.jns.2010.01.014 CrossRefPubMedGoogle Scholar
  49. 49.
    Crowley RK, Sherlock M, Agha A et al (2007) Clinical insights into adipsic diabetes insipidus: a large case series. Clin Endocrinol (Oxf) 66:475–482.  https://doi.org/10.1111/j.1365-2265.2007.02754.x CrossRefGoogle Scholar
  50. 50.
    Smith D, McKenna K, Moore K et al (2002) Baroregulation of vasopressin release in adipsic diabetes insipidus. J Clin Endocrinol Metab 87:4564–4568.  https://doi.org/10.1210/jc.2002-020090 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Academic Department of EndocrinologyBeaumont Hospital/RCSI Medical SchoolDublinIreland

Personalised recommendations