Skip to main content

Advertisement

Log in

Optical coherence tomography retinal ganglion cell complex analysis for the detection of early chiasmal compression

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Purpose

To report patients with sellar tumors and chiasmal compression with normal visual fields, who demonstrate damage to the retinal nerve fiber layer (RNFL) and ganglion cell complex (GCC) on optical coherence tomography (OCT).

Methods

Seven patients with sellar tumors causing mass effect on the optic chiasm without definite visual field defect, but abnormal GCC are described. GCC/RNFL analyses using Cirrus-OCT were classified into centiles based on the manufacturer’s reference range.

Results

In seven patients with radiologic compression of the chiasm by a sellar tumor, OCT-GCC thickness detected compressive chiasmopathy before visual defects became apparent on standard automated visual field testing. Without OCT, our patients would have been labelled as having normal visual function and no evidence of compressive chiasmopathy. With only OCT-RNFL analysis, 3/7 patients would still have been labelled as having no compression of the anterior visual pathways.

Conclusions

These patients show that OCT-GCC analysis is more sensitive than visual field testing with standard automated perimetry in the detection of compressive chiasmopathy or optic neuropathy. These cases and previous studies suggest that OCT-GCC analysis may be used in addition to visual field testing to evaluate patients with lesions compressing the chiasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Casanueva FF, Barkan AL, Buchfelder M, Klibanski A, Laws ER, Loeffler JS, Melmed S, Mortini P, Wass J, Giustina A (2017) Pituitary society, expert group on pituitary tumors. Criteria for the definition of pituitary tumor centers of excellence (PTCOE): a pituitary society statement. Pituitary 20:489–498

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ryu WHA, Starreveld Y, Burton JM, Liu J, Costello F, Group PS (2017) The utility of magnetic resonance imaging in assessing patients with pituitary tumors compressing the anterior visual pathway. J Neuroophthalmol 37:230–238

    Article  PubMed  Google Scholar 

  3. Newman SA, Turbin RE, Bodach ME, Tumialan LM, Oyesiku NM, Litvack Z, Zada G, Patil CG, Aghi MK (2016) Congress of neurological surgeons systematic review and evidence-based guideline on pretreatment ophthalmology evaluation in patients with suspected nonfunctioning pituitary adenomas. Neurosurgery 79:E530–E532

    Article  PubMed  Google Scholar 

  4. Kedar S, Ghate D, Corbett JJ (2011) Visual fields in neuro-ophthalmology. Indian J Ophthalmol 59:103–109

    Article  PubMed  PubMed Central  Google Scholar 

  5. Danesh-Meyer HV, Carroll SC, Foroozan R, Savino PJ, Fan J, Jiang Y, Vander Hoorn S (2006) Relationship between retinal nerve fiber layer and visual field sensitivity as measured by optical coherence tomography in chiasmal compression. Invest Ophthalmol Vis Sci 47:4827–4835

    Article  PubMed  Google Scholar 

  6. Danesh-Meyer HV, Papchenko T, Savino PJ, Law A, Evans J, Gamble GD (2008) In vivo retinal nerve fiber layer thickness measured by optical coherence tomography predicts visual recovery after surgery for parachiasmal tumors. Invest Ophthalmol Vis Sci 49:1879–1885

    Article  PubMed  Google Scholar 

  7. Phal PM, Steward C, Nichols AD, Kokkinos C, Desmond PM, Danesh-Meyer H, Sufaro YZ, Kaye AH, Moffat BA (2016) Assessment of optic pathway structure and function in patients with compression of the optic chiasm: a correlation with optical coherence tomography. Invest Ophthalmol Vis Sci 57:3884–3890

    Article  PubMed  CAS  Google Scholar 

  8. Jacob M, Raverot G, Jouanneau E, Borson-Chazot F, Perrin G, Rabilloud M, Tilikete C, Bernard M, Vighetto A (2009) Predicting visual outcome after treatment of pituitary adenomas with optical coherence tomography. Am J Ophthalmol 147:64–70 e62

    Article  PubMed  Google Scholar 

  9. Loo JL, Tian J, Miller NR, Subramanian PS (2013) Use of optical coherence tomography in predicting post-treatment visual outcome in anterior visual pathway meningiomas. Br J Ophthalmol 97:1455–1458

    Article  PubMed  Google Scholar 

  10. Monteiro ML, Hokazono K, Fernandes DB, Costa-Cunha LV, Sousa RM, Raza AS, Wang DL, Hood DC (2014) Evaluation of inner retinal layers in eyes with temporal hemianopic visual loss from chiasmal compression using optical coherence tomography. Invest Ophthalmol Vis Sci 55:3328–3336

    Article  PubMed  PubMed Central  Google Scholar 

  11. Danesh-Meyer HV, Wong A, Papchenko T, Matheos K, Stylli S, Nichols A, Frampton C, Daniell M, Savino PJ, Kaye AH (2015) Optical coherence tomography predicts visual outcome for pituitary tumors. J Clin Neurosci 22:1098–1104

    Article  PubMed  Google Scholar 

  12. Johansson C, Lindblom B (2009) The role of optical coherence tomography in the detection of pituitary adenoma. Acta Ophthalmol 87:776–779

    Article  PubMed  Google Scholar 

  13. Tieger MG, Hedges TR III, Ho J, Erlich-Malona NK, Vuong LN, Athappilly GK, Mendoza-Santiesteban CE (2017) Ganglion cell complex loss in chiasmal compression by brain tumors. J Neuroophthalmol 37:7–12

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yum HR, Park SH, Park HY, Shin SY (2016) Macular ganglion cell analysis determined by cirrus HD optical coherence tomography for early detecting chiasmal compression. PLoS ONE 11:e0153064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Monteiro ML, Costa-Cunha LV, Cunha LP, Malta RF (2010) Correlation between macular and retinal nerve fibre layer Fourier-domain OCT measurements and visual field loss in chiasmal compression. Eye 24:1382–1390

    Article  PubMed  CAS  Google Scholar 

  16. Akashi A, Kanamori A, Ueda K, Matsumoto Y, Yamada Y, Nakamura M (2014) The detection of macular analysis by SD-OCT for optic chiasmal compression neuropathy and nasotemporal overlap. Invest Ophthalmol Vis Sci 55:4667–4672

    Article  PubMed  Google Scholar 

  17. Moon CH, Hwang SC, Ohn YH, Park TK (2011) The time course of visual field recovery and changes of retinal ganglion cells after optic chiasmal decompression. Invest Ophthalmol Vis Sci 52:7966–7973

    Article  PubMed  Google Scholar 

  18. Horton JC (2017) Invited commentary: ganglion cell complex measurement in compressive optic neuropathy. J Neuroophthalmol 37:13–15

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jeong AR, Kim EY, Kim NR (2016) Preferential ganglion cell loss in the nasal hemiretina in patients with pituitary tumor. J Neuroophthalmol 36:152–155

    Article  PubMed  Google Scholar 

  20. Hood DC, Raza AS, de Moraes CG, Liebmann JM, Ritch R (2013) Glaucomatous damage of the macula. Prog Retin Eye Res 32:1–21

    Article  PubMed  Google Scholar 

  21. Vuong LN, Hedges TR III (2017) Ganglion cell layer complex measurements in compressive optic neuropathy. Curr Opin Ophthalmol 28:573–578

    Article  PubMed  Google Scholar 

  22. Zehnder S, Wildberger H, Hanson JVM, Lukas S, Pelz S, Landau K, Wichmann W, Gerth-Kahlert C (2018) Retinal ganglion cell topography in patients with visual pathway pathology. J Neuroophthalmol 38:172–178

    Article  PubMed  Google Scholar 

  23. Azuara-Blanco A, Banister K, Boachie C, McMeekin P, Gray J, Burr J, Bourne R, Garway-Heath D, Batterbury M, Hernández R, McPherson G, Ramsay C, Cook J (2016) Automated imaging technologies for the diagnosis of glaucoma: a comparative diagnostic study for the evaluation of the diagnostic accuracy, performance as triage tests and cost-effectiveness (GATE study). Health Technol Assess 20:1–168

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kerrigan-Baumrind LA, Quigley HA, Pease ME, Kerrigan DF, Mitchell RS (2000) Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 41:741–748

    PubMed  CAS  Google Scholar 

  25. Ferreras A, Polo V, Larrosa JM, Pablo LE, Pajarin AB, Pueyo V, Honrubia FM (2007) Can frequency-doubling technology and short-wavelength automated perimetries detect visual field defects before standard automated perimetry in patients with preperimetric glaucoma? J Glaucoma 16:372–383

    Article  PubMed  Google Scholar 

  26. Wall M, Neahring RK, Woodward KR (2002) Sensitivity and specificity of frequency doubling perimetry in neuro-ophthalmic disorders: a comparison with conventional automated perimetry. Invest Ophthalmol Vis Sci 43:1277–1283

    PubMed  Google Scholar 

  27. Kim KE, Jeoung JW, Kim DM, Ahn SJ, Park KH, Kim SH (2015) Long-term follow-up in preperimetric open-angle glaucoma: progression rates and associated factors. Am J Ophthalmol 159:160–168

    Article  PubMed  Google Scholar 

  28. Chen JJ, Kardon RH (2016) Avoiding clinical misinterpretation and artifacts of optical coherence tomography analysis of the optic nerve, retinal nerve fiber layer, and ganglion cell layer. J Neuroophthalmol 36:417–438

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported in part by an unrestricted departmental grant (Department of Ophthalmology) from Research to Prevent Blindness, Inc., New York, and by NIH/NEI core Grant P30-EY006360 (Department of Ophthalmology). Dr. Biousse received research support from NIH/PHS (UL1-RR025008). Dr. Newman is a recipient of the Research to Prevent Blindness Lew R. Wasserman Merit Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Biousse.

Ethics declarations

Conflict of interest

No conflicting relationship exists for any author.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanch, R.J., Micieli, J.A., Oyesiku, N.M. et al. Optical coherence tomography retinal ganglion cell complex analysis for the detection of early chiasmal compression. Pituitary 21, 515–523 (2018). https://doi.org/10.1007/s11102-018-0906-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-018-0906-2

Keywords

Navigation