Advertisement

Pituitary

, Volume 21, Issue 4, pp 355–361 | Cite as

Differential gene expression of sirtuins between somatotropinomas and nonfunctioning pituitary adenomas

  • Isabella P. P. Grande
  • Paulo V. G. H. Amorim
  • Ane Caroline Thé B. Freire
  • Raquel S. Jallad
  • Nina R. Musolino
  • Valter A. Cescato
  • Gilberto O. da Silva
  • Marcello D. Bronstein
  • Ericka B. Trarbach
Article
  • 156 Downloads

Abstract

Sirtuins 1–7 (SIRT) are a highly conserved family of histone deacetylases involved in the regulation of longevity that have a considerable impact in transcription, DNA repair regulation, telomeric stability, cell senescence and apoptosis. In the present study, SIRT1–7 mRNA levels were evaluated in 37 somatotropinomas and 31 nonfunctioning pituitary adenomas (NFPAs) using qPCR and relation to tumor size, invasiveness and Ki-67 proliferative index was made. Overexpression of SIRT1 was observed in 86.5% of somatotropinomas versus 41.9% of NFPAs (P < 0.01). SIRT3 was more underexpressed in NFPAs than somatotropinomas (77.4 and 40.5%, respectively, P < 0.01) as well as SIRT4 and SIRT7. Despite the lack of association between sirtuins and invasiveness or Ki-67 index, SIRT1 and SIRT3 expressions were related to tumor size. Mean of the largest diameter was smaller in adenomas with SIRT1 overexpression than with normal expression (P < 0.01) and SIRT3 underexpression was associated with larger tumors (P < 0.01). In conclusion, a pronounced difference in sirtuins expression was identified between pituitary adenomas, suggesting that these genes are potential markers of pituitary adenomas and could be employed in the characterization of somatotropinomas and NFPAs. The role of sirtuins in pathogenesis of pituitary tumors merits further investigation and possibly will provide new molecular insight about their progression.

Keywords

Sirtuins Histone deacetylases Senescence Somatotropinomas NFPA Tumor marker 

Notes

Acknowledgements

Special thanks to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior/CAPES for the scholarship (IPPG).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Molitch ME (2008) Nonfunctioning pituitary tumors and pituitary incidentalomas. Endocrinol Metab Clin North Am 37(1):151–171, xi.  https://doi.org/10.1016/j.ecl.2007.10.011 CrossRefPubMedGoogle Scholar
  2. 2.
    Asa SL, Ezzat S (1998) The cytogenesis and pathogenesis of pituitary adenomas. Endocr Rev 19(6):798–827.  https://doi.org/10.1210/edrv.19.6.0350 PubMedGoogle Scholar
  3. 3.
    Pinto EM, Bronstein MD (2008) Molecular aspects of pituitary tumorigenesis. Arq Bras Endocrinol Metabol 52(4):599–610CrossRefPubMedGoogle Scholar
  4. 4.
    Wang Y, Liang Y, Vanhoutte PM (2011) SIRT1 and AMPK in regulating mammalian senescence: a critical review and a working model. FEBS Lett 585(7):986–994.  https://doi.org/10.1016/j.febslet.2010.11.047 CrossRefPubMedGoogle Scholar
  5. 5.
    Mete O, Ezzat S, Asa SL (2012) Biomarkers of aggressive pituitary adenomas. J Mol Endocrinol 49(2):R69–R78.  https://doi.org/10.1530/jme-12-0113 CrossRefGoogle Scholar
  6. 6.
    Vassilopoulos A, Fritz KS, Petersen DR, Gius D (2011) The human sirtuin family: evolutionary divergences and functions. Hum Genom 5(5):485–496CrossRefGoogle Scholar
  7. 7.
    Chalkiadaki A, Guarente L (2015) The multifaceted functions of sirtuins in cancer. Nat Rev Cancer 15(10):608–624.  https://doi.org/10.1038/nrc3985 CrossRefPubMedGoogle Scholar
  8. 8.
    Nakagawa T, Guarente L (2011) Sirtuins at a glance. J Cell Sci 124(Pt 6):833–838.  https://doi.org/10.1242/jcs.081067 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kim HS, Patel K, Muldoon-Jacobs K, Bisht KS, Aykin-Burns N, Pennington JD, van der Meer R, Nguyen P, Savage J, Owens KM, Vassilopoulos A, Ozden O, Park SH, Singh KK, Abdulkadir SA, Spitz DR, Deng CX, Gius D (2010) SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 17(1):41–52.  https://doi.org/10.1016/j.ccr.2009.11.023 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Knosp E, Steiner E, Kitz K, Matula C (1993) Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery 33(4):610–617PubMedGoogle Scholar
  11. 11.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar
  12. 12.
    Bosch-Presegué L, Vaquero A (2011) The dual role of sirtuins in cancer. Genes Cancer 2(6):648–662.  https://doi.org/10.1177/1947601911417862 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Yuan J, Minter-Dykhouse K, Lou Z (2009) A c-Myc–SIRT1 feedback loop regulates cell growth and transformation. J Cell Biol 185(2):203–211CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Firestein R, Blander G, Michan S, Oberdoerffer P, Ogino S, Campbell J, Bhimavarapu A, Luikenhuis S, de Cabo R, Fuchs C, Hahn WC, Guarente LP, Sinclair DA (2008) The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS ONE 3(4):e2020.  https://doi.org/10.1371/journal.pone.0002020 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Jeong SM, Xiao C, Finley LW, Lahusen T, Souza AL, Pierce K, Li YH, Wang X, Laurent G, German NJ, Xu X, Li C, Wang RH, Lee J, Csibi A, Cerione R, Blenis J, Clish CB, Kimmelman A, Deng CX, Haigis MC (2013) SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell 23(4):450–463.  https://doi.org/10.1016/j.ccr.2013.02.024 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Yu J, Qin B, Wu F, Qin S, Nowsheen S, Shan S, Zayas J, Pei H, Lou Z, Wang L (2017) Regulation of serine-threonine kinase Akt activation by NAD+-dependent deacetylase SIRT7. Cell Rep 18(5):1229–1240.  https://doi.org/10.1016/j.celrep.2017.01.009 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Shin J, He M, Liu Y, Paredes S, Villanova L, Brown K, Qiu X, Nabavi N, Mohrin M, Wojnoonski K, Li P, Cheng HL, Murphy AJ, Valenzuela DM, Luo H, Kapahi P, Krauss R, Mostoslavsky R, Yancopoulos GD, Alt FW, Chua KF, Chen D (2013) SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease. Cell Rep 5(3):654–665.  https://doi.org/10.1016/j.celrep.2013.10.007 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lim JH, Lee YM, Chun YS, Chen J, Kim JE, Park JW (2010) Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol Cell 38(6):864–878.  https://doi.org/10.1016/j.molcel.2010.05.023 CrossRefPubMedGoogle Scholar
  19. 19.
    Saunders LR, Verdin E (2007) Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 26(37):5489–5504.  https://doi.org/10.1038/sj.onc.1210616 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Isabella P. P. Grande
    • 1
  • Paulo V. G. H. Amorim
    • 1
  • Ane Caroline Thé B. Freire
    • 2
  • Raquel S. Jallad
    • 2
  • Nina R. Musolino
    • 3
  • Valter A. Cescato
    • 3
  • Gilberto O. da Silva
    • 3
  • Marcello D. Bronstein
    • 2
  • Ericka B. Trarbach
    • 1
    • 2
  1. 1.Laboratorio de Endocrinologia Celular e Molecular, LIM25, Disciplina de Endocrinologia, Hospital das ClinicasFMUSPSao PauloBrazil
  2. 2.Unidade de Neuroendocrinologia, Disciplina de Endocrinologia, Hospital das ClinicasFMUSPSao PauloBrazil
  3. 3.Divisao de Neurocirurgia Funcional, Instituto de Psiquiatria - IPq, Hospital das ClinicasFMUSPSao PauloBrazil

Personalised recommendations