Clinicopathological significance of baseline T2-weighted signal intensity in functional pituitary adenomas

Abstract

Purpose

To assess baseline T2-weighted signal intensity (T2-WSI) of functional pituitary adenomas (FPA), and to investigate the relationship of baseline T2-WSI with clinical features, histopathological granulation patterns, and response to treatment in patients with acromegaly, prolactinoma and Cushing’s disease (CD).

Methods

Somatotroph adenomas (n = 87), prolactinomas (n = 78) and corticotroph adenomas (n = 29) were included in the study. Baseline T2-WSI findings (grouped as hypo-, iso- and hyperintense) were compared with hormone levels, tumor diameter, granulation patterns and response to treatment.

Results

Somatotroph adenomas were mostly hypointense (53%), prolactinomas were dominantly hyperintense (55%), and corticotroph adenomas were generally hyperintense (45%). Hyperintense somatotroph adenomas were larger in size with sparsely granulated pattern and tumor shrinkage rate was lower after somatostatin analogues (SSA) (p = 0.007, p = 0.035, p = 0.029, respectively). T2 hypointensity was related with higher baseline IGF-1% ULN (upper limit of normal) levels and a better response to SSA treatment (p = 0.02, p = 0.045, respectively). In female prolactinomas, hyperintensity was correlated with a smaller adenoma diameter (p = 0.001). Hypointense female prolactinomas were related to younger age at diagnosis, higher baseline PRL levels and dopamine agonist (DA) resistance (p = 0.009, p = 0.022, p < 0.001, respectively). Hyperintense corticotroph adenomas were related to larger adenoma size and sparsely granulated pattern (p = 0.04, p = 0.017, respectively). There was no significant difference in the recurrence with T2WSI in CD.

Conclusion

Baseline hypointense somatotroph adenomas show a better response to SSA, whereas hypointensity was related to DA resistance in female prolactinomas.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Bonneville JF, Bonneville F, Cattin F (2005) Magnetic resonance imaging of pituitary adenomas. Eur Radiol 15(3):543–548

    Article  PubMed  Google Scholar 

  2. 2.

    Bonneville JF (2016) Magnetic resonance imaging of pituitary tumors. Front Horm Res 45:97–120

    Article  PubMed  Google Scholar 

  3. 3.

    Hagiwara A, Inoue Y, Wakasa K, Haba T, Tashiro T, Miyamoto T (2003) Comparison of growth hormone-producing and non-growth hormone-producing pituitary adenomas: imaging characteristics and pathologic correlation. Radiology 228(2):533–538

    Article  PubMed  Google Scholar 

  4. 4.

    Puig-Domingo M, Resmini E, Gomez-Anson B, Nicolau J, Mora M, Palomera E, Martí C, Halperin I, Webb SM (2010) Magnetic resonance imaging as a predictor of response to somatostatin analogs in acromegaly after surgical failure. J Clin Endocrinol Metab 95(11):4973–4978

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Heck A, Ringstad G, Fougner SL, Casar-Borota O, Nome T, Ramm-Pettersen J, Bollerslev J (2012) Intensity of pituitary adenoma on T2-weighted magnetic resonance imaging predicts the response to octreotide treatment in newly diagnosed acromegaly. Clin Endocrinol 77:72–78

    Article  CAS  Google Scholar 

  6. 6.

    Potorac I, Petrossians P, Daly AF, Schillo F, Slama CB, Nagi S, Sahnoun M, Brue T, Girard N, Chanson P, Nasser G, Caron P, Bonneville F, Raverot G, Lapras V, Cotton F, Delemer B, Higel B, Boulin A, Gaillard S, Luca F, Goichot B, Dietemann JL, Beckers A, Bonneville JF (2015) Pituitary MRI characteristics in 297 acromegaly patients based on T2-weighted sequences. Endocr Relat Cancer 22(2):169–177

    Article  PubMed  CAS  Google Scholar 

  7. 7.

    Potorac I, Petrossians P, Daly AF, Alexopoulou O, Borot S, Sahnoun-Fathallah M, Castinetti F, Devuyst F, Jaffrain-Rea ML, Briet C, Luca F, Lapoirie M, Zoicas F, Simoneau I, Diallo AM, Muhammad A, Kelestimur F, Nazzari E, Centeno RG, Webb SM, Nunes ML, Hana V, Pascal-Vigneron V, Ilovayskaya I, Nasybullina F, Achir S, Ferone D, Neggers SJ, Delemer B, Petit JM, Schöfl C, Raverot G, Goichot B, Rodien P, Corvilain B, Brue T, Schillo F, Tshibanda L, Maiter D, Bonneville JF, Beckers A (2016) T2-weighted MRI signal predicts hormone and tumor responses to somatostatin analogs in acromegaly. Endocr Relat Cancer 23(11):871–881

    Article  PubMed  Google Scholar 

  8. 8.

    Shen M, Zhang Q, Liu W, Wang M, Zhu J, Ma Z, He W, Li S, Shou X, Li Y, Zhang Z, Ye H, He M, Lu B, Yao Z, Lu Y, Qiao N, Ye Z, Zhang Y, Yang Y, Zhao Y, Wang Y (2016) Predictive value of T2 relative signal intensity for response to somatostatin analogs in newly diagnosed acromegaly. Neuroradiology 58(11):1057–1065

    Article  PubMed  Google Scholar 

  9. 9.

    Heck A, Emblem KE, Casar-Borota O, Bollerslev J, Ringstad G (2016) Quantitative analyses of T2-weighted MRI as a potential marker for response to somatostatin analogs in newly diagnosed acromegaly. Endocrine 52(2):333–343

    Article  PubMed  CAS  Google Scholar 

  10. 10.

    Heck A, Emblem KE, Casar-Borota O, Ringstad G, Bollerslev J (2016) MRI T2 characteristics in somatotroph adenomas following somatostatin analog treatment in acromegaly. Endocrine 53(1):327–330

    Article  PubMed  CAS  Google Scholar 

  11. 11.

    Bakhtiar Y, Hanaya R, Tokimura H, Hirano H, Oyoshi T, Fujio S, Bohara M, Arita K (2014) Geometric survey on magnetic resonance imaging of growth hormone producing pituitary adenoma. Pituitary 17(2):142–149

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Kreutz J, Vroonen L, Cattin F, Petrossians P, Thiry A, Rostomyan L, Tshibanda L, Beckers A, Bonneville JF (2015) Intensity of prolactinoma on T2-weighted magnetic resonance imaging: towards another gender difference. Neuroradiology 57(7):679–684

    Article  PubMed  Google Scholar 

  13. 13.

    Kurosaki M, Kambe A, Watanabe T, Fujii S, Ogawa T (2015) Serial 3 T magnetic resonance imaging during cabergoline treatment of macroprolactinomas. Neurol Res 37(4):341–346

    Article  PubMed  CAS  Google Scholar 

  14. 14.

    Lundin P, Bergstro¨m K, Nyman R, Lundberg PO, Muhr C (1992) Macroprolactinomas: serial MR imaging in long-term bromocriptine therapy. Am J Neuroradiol 13:1279–1291

    PubMed  CAS  Google Scholar 

  15. 15.

    Levine SN, Ishaq S, Nanda A, Wilson JD, Gonzalez-Toledo E (2013) Occurence of extensive amyloid deposits in a prolactin-secreting pituitary macroadenoma: a radiologic-pathologic correlation. Ann Diagn Pathol 7:361–366

    Article  Google Scholar 

  16. 16.

    Lundin P, Nyman R, Burman P, Lundberg PO, Muhr C (1992) MRI of pituitary macroadenomas with reference to hormonal activity. Neuroradiology 34(1):43–51

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Nieman LK, Biller BM, Findling JW, Newell-Price J, Savage MO, Stewart PM, Montori VM (2008) The diagnosis of Cushing’s syndrome: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 93(5):1526–1540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. 18.

    Melmed S, Casanueva FF, Hoffman AR, Kleinberg DL, Montori VM, Schlechte JA, Wass JA (2011) Endocrine Society. Diagnosis and treatment of hyperprolactinemia: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 96:273–288

    Article  PubMed  CAS  Google Scholar 

  19. 19.

    Katznelson L, Laws ER Jr, Melmed S, Molitch ME, Murad MH, Utz A, Wass JA, Endocrine Society (2014) Acromegaly: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 99(11):3933–3951

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Asa SL (2011) Tumors of the pituitary gland. Armed Forces Institute of Pathology, Washington, DC

    Google Scholar 

  21. 21.

    Dogansen SC, Selcukbiricik OS, Tanrikulu S, Yarman S (2016) Withdrawal of dopamine agonist therapy in prolactinomas: in which patients when? Pituitary 19(3):303–310

    Article  PubMed  CAS  Google Scholar 

  22. 22.

    Nieman LK, Biller BM, Findling JW, Murad MH, Newell-Price J, Savage MO, Tabarin A, Endocrine Society (2015) Treatment of Cushing’s syndrome: an endcorine society clinical practice guideline. J Clin Endocrinol Metab 100(8):2807–2831

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. 23.

    Lindsay JR, Oldfield EH, Stratakis CA, Nieman LK (2011) The postoperative basal cortisol and CRH tests for prediction of long-term remission from Cushing’s disease after transsphenoidal surgery. J Clin Endocrinol Metab 96(7):2057–2064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. 24.

    Boulby P (2004) T2: the transverse relaxation time. In: Tofts P (ed) Quantitative MRI of the brain-measuring changes caused by disease, vol 1. Wiley, Chichester, pp 143–201

    Google Scholar 

  25. 25.

    Kamman RL, Go KG, Brouwer W, Berendsen HJC (1988) Nuclear magnetic resonance relaxation in experimental brain edema: effects of water concentration, protein concentration, and temperature. Magn Reson Med 6:265–274

    Article  PubMed  CAS  Google Scholar 

  26. 26.

    Potorac I, Petrossians P, Schillo F, Ben slama C, Nagi S, Sahnoun M, Brue T, Chanson P, Nasser G, Caron P, Bonneville F, Raverot G, Lapras V, Coton F, Delemer B, Higel B, Boulin A, Gaillard S, Goichot B, Dietemann JL, Kreutz J, Tshibanda L, Beckers A, Bonneville JF (2013) Correlations significatives de l’aspect en IRM haute resolution des adénomes hypophysaires à GH avant traitement. Ann Endocrinol 74:259–260

    Article  Google Scholar 

  27. 27.

    Fougner SL, Casar-Borota O, Heck A, Berg JP, Bollerslev J (2012) Adenoma granulation pattern correlates with clinical variables and effect of somatostatin analogue treatment in a large series of patients with acromegaly. Clin Endocrinol 76(1):96–102

    Article  CAS  Google Scholar 

  28. 28.

    Colao A, Sarno AD, Cappabianca P, Briganti F, Pivonello R, Somma CD, Faggiano A (2003) Gender differences in the prevalence, clinical features and response to cabergoline in hyperprolactinemia. Eur J Endocrinol 148:325–331

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    Fideleff HL, Boquete HR, Suárez MG, Azaretzky M (2009) Prolactinoma in children and adolescents. Horm Res 72(4):197–205

    Article  PubMed  CAS  Google Scholar 

  30. 30.

    Nishioka H, Haraoka J, Akada K (2003) Growth potential of prolactinomas in men: is it really different from women? Surg Neurol 59:386–390

    Article  PubMed  Google Scholar 

  31. 31.

    Kitamura K, Nakayama T, Ohata K, Wakasa K, Miki Y (2011) Computed tomography and magnetic resonance imaging appearance of prolactinoma with spheroid-type amyloid deposition. J Comput Assist Tomogr 35(2):313–315

    Article  PubMed  Google Scholar 

  32. 32.

    Asa SL, Ezzat S (2009) The pathogenesis of pituitary tumors. Annu Rev Pathol 4:97–126

    Article  PubMed  CAS  Google Scholar 

  33. 33.

    Saeger W, Honegger J, Theodoropoulou M, Knappe UJ, Schöfl C, Petersenn S, Buslei R (2016) Clinical Impact of the current WHO classification of pituitary adenomas. Endocr Pathol 27(2):104–114

    Article  PubMed  CAS  Google Scholar 

  34. 34.

    Cazabat L, Dupuy M, Boulin A, Bernier M, Baussart B, Foubert L, Raffin-Sanson ML, Caron P, Bertherat J, Gaillard S (2014) Silent, but not unseen: multimicrocystic aspect on T2-weighted MRI in silent corticotroph adenomas. Clin Endocrinol 81(4):566–572

    Article  CAS  Google Scholar 

  35. 35.

    Lloyd RV, Osamura RY, Klöppel G, Rosai J (eds) (2017) World Health Organization classification of tumours of endocrine organs, 4th edn. IARC Press, Lyon

    Google Scholar 

  36. 36.

    Syro LV, Rotondo F, Cusimano MD, Di Ieva A, Horvath E, Restrepo LM, Wong M, Killinger DW, Smyth H, Kovacs K (2015) Current status on histological classification in Cushing’s disease. Pituitary 18(2):217–224

    Article  PubMed  Google Scholar 

  37. 37.

    Mete O, Asa SL (2012) Clinicopathological correlations in pituitary adenomas. Brain Pathol 22(4):443–453

    Article  PubMed  Google Scholar 

  38. 38.

    Bochicchio D, Losa M, Buchfelder M (1995) Factors influencing the immediate and late outcome of Cushing’s disease treated by transsphenoidal surgery: a retrospective study by the European Cushing’s disease survey group. J Clin Endocrinol Metab 80:3114–3120

    PubMed  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sema Ciftci Dogansen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dogansen, S.C., Yalin, G.Y., Tanrikulu, S. et al. Clinicopathological significance of baseline T2-weighted signal intensity in functional pituitary adenomas. Pituitary 21, 347–354 (2018). https://doi.org/10.1007/s11102-018-0877-3

Download citation

Keywords

  • T2-weighted signal intensity
  • Somatotroph adenoma
  • Prolactinoma
  • Corticotroph adenoma
  • Granulation pattern
  • Dopamine agonist resistance