Discordance between mass spectrometry and immunometric IGF-1 assay in pituitary disease: a prospective study



Measuring IGF-1, a biomarker for GH activity, is critical to evaluating disordered hypothalamic-pituitary GH axis. Inconsistent IGF-1 measurements among different immunoassays are well documented. We switched from Immulite 2000 immunoassay to narrow-mass-extraction, high-resolution liquid chromatography mass-spectrometry (LC-MS) compliant with recent consensus recommendations on assay standardization. Comparability of these two assays in patients with pituitary disease in a clinical practice setting is not known. We sought to compare IGF-1 levels on Immulite 2000 and LC-MS in samples from naïve and treated patients with secretory and non-secretory pituitary masses.


We prospectively collected serum samples from 101 patients treated at the Cedars-Sinai Pituitary Center between February 2012 and March 2014. We intentionally recruited more patients with acromegaly or GH deficiency to ensure a clinically representative cohort. Samples were classified as in or out of the respective reference ranges. Bland–Altman analysis was used to assess agreement between assays.


Twenty-four percent of samples were classified differently as below, in, or above range. Agreement between the assays was poor overall, with a significant bias for immunoassay reporting higher values than LC-MS. This pattern was also observed in patients with acromegaly and those with ≥ 2 pituitary hormone deficiencies.


IGF-1 results may differ after switching from an older immunoassay to a consensus-compliant assay such as LC-MS. Clinicians should consider the potential impact of assay switching before altering treatment due to discrepant results, particularly in patients monitored over time, such as those with acromegaly and GH deficiency.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Melmed S (2006) Medical progress: acromegaly. N Engl J Med 355(24):2558–2573

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Clemmons DR (2006) Clinical utility of measurements of insulin-like growth factor 1. Nat Clin Pract Endocrinol Metab 2(8):436–446. https://doi.org/10.1038/ncpendmet0244

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Baumann GP (2012) Growth hormone doping in sports: a critical review of use and detection strategies. Endocr Rev 33(2):155–186. https://doi.org/10.1210/er.2011-1035

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Ho KK, Nelson AE (2011) Growth hormone in sports: detecting the doped or duped. Horm Res Paediatr 76(Suppl 1):84–90. https://doi.org/10.1159/000329185

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Brabant G, von zur Muhlen A, Wuster C, Ranke MB, Kratzsch J, Kiess W, Ketelslegers JM, Wilhelmsen L, Hulthen L, Saller B, Mattsson A, Wilde J, Schemer R, Kann P (2003) Serum insulin-like growth factor I reference values for an automated chemiluminescence immunoassay system: results from a multicenter study. Horm Res 60(2):53–60

    CAS  PubMed  Google Scholar 

  6. 6.

    Frystyk J, Freda P, Clemmons DR (2010) The current status of IGF-I assays: a 2009 update. Growth Horm IGF Res 20(1):8–18. https://doi.org/10.1016/j.ghir.2009.09.004

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Bidlingmaier M (2009) Pitfalls of insulin-like growth factor I assays. Horm Res 71(Suppl 1):30–33. https://doi.org/10.1159/000178034

    CAS  PubMed  Google Scholar 

  8. 8.

    Clemmons DR (2011) Consensus statement on the standardization and evaluation of growth hormone and insulin-like growth factor assays. Clin Chem 57(4):555–559. https://doi.org/10.1373/clinchem.2010.150631

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Pokrajac A, Wark G, Ellis AR, Wear J, Wieringa GE, Trainer PJ (2007) Variation in GH and IGF-I assays limits the applicability of international consensus criteria to local practice. Clin Endocrinol (Oxf) 67(1):65–70. https://doi.org/10.1111/j.1365-2265.2007.02836.x

    CAS  Article  Google Scholar 

  10. 10.

    Bidlingmaier M, Friedrich N, Emeny RT, Spranger J, Wolthers OD, Roswall J, Korner A, Obermayer-Pietsch B, Hubener C, Dahlgren J, Frystyk J, Pfeiffer AF, Doering A, Bielohuby M, Wallaschofski H, Arafat AM (2014) Reference intervals for insulin-like growth factor-1 (IGF-I) from birth to senescence: results from a multicenter study using a new automated chemiluminescence IGF-I immunoassay conforming to recent international recommendations. J Clin Endocrinol Metab 99(5):1712–1721. https://doi.org/10.1210/jc.2013-3059

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Chanson P, Arnoux A, Mavromati M, Brailly-Tabard S, Massart C, Young J, Piketty ML, Souberbielle JC, Investigators V (2016) Reference values for IGF-I serum concentrations: comparison of six immunoassays. J Clin Endocrinol Metab 101(9):3450–3458. https://doi.org/10.1210/jc.2016-1257

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Burns C, Rigsby P, Moore M, Rafferty B (2009) The first international standard for insulin-like growth factor-1 (IGF-1) for immunoassay: preparation and calibration in an international collaborative study. Growth Horm IGF Res 19(5):457–462. https://doi.org/10.1016/j.ghir.2009.02.002

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Kay R, Halsall DJ, Annamalai AK, Kandasamy N, Taylor K, Fenwick S, Webb A, Wark G, Pleasance S, Gurnell M (2013) A novel mass spectrometry-based method for determining insulin-like growth factor 1: assessment in a cohort of subjects with newly diagnosed acromegaly. Clin Endocrinol (Oxf) 78(3):424–430. https://doi.org/10.1111/cen.12085

    CAS  Article  Google Scholar 

  14. 14.

    Bystrom CE, Sheng S, Clarke NJ (2011) Narrow mass extraction of time-of-flight data for quantitative analysis of proteins: determination of insulin-like growth factor-1. Anal Chem 83(23):9005–9010. https://doi.org/10.1021/ac201800g

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Bystrom C, Sheng S, Zhang K, Caulfield M, Clarke NJ, Reitz R (2012) Clinical utility of insulin-like growth factor 1 and 2; determination by high resolution mass spectrometry. PLoS ONE 7(9):e43457. https://doi.org/10.1371/journal.pone.0043457

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Arsene CG, Kratzsch J, Henrion A (2014) Mass spectrometry: an alternative in growth hormone measurement. Bioanalysis 6(18):2391–2402. https://doi.org/10.4155/bio.14.196

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Cox HD, Lopes F, Woldemariam GA, Becker JO, Parkin MC, Thomas A, Butch AW, Cowan DA, Thevis M, Bowers LD, Hoofnagle AN (2014) Interlaboratory agreement of insulin-like growth factor 1 concentrations measured by mass spectrometry. Clin Chem 60(3):541–548. https://doi.org/10.1373/clinchem.2013.208538

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Hoofnagle AN, Wener MH (2009) The fundamental flaws of immunoassays and potential solutions using tandem mass spectrometry. J Immunol Methods 347(1–2):3–11. https://doi.org/10.1016/j.jim.2009.06.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Monaghan PJ, Keevil BG, Trainer PJ (2013) The use of mass spectrometry to improve the diagnosis and the management of the HPA axis. Rev Endocr Metab Disord 14(2):143–157. https://doi.org/10.1007/s11154-013-9240-1

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    IMMULITE® (2005) 2000 IGF-I [package insert]. In: Diagnostic products corporation. IMMULITE®, Los Angeles

  21. 21.

    Elmlinger MW, Kuhnel W, Weber MM, Ranke MB (2004) Reference ranges for two automated chemiluminescent assays for serum insulin-like growth factor I (IGF-I) and IGF-binding protein 3 (IGFBP-3). Clin Chem Lab Med 42(6):654–664. https://doi.org/10.1515/CCLM.2004.112

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Katznelson L, Laws ER Jr, Melmed S, Molitch ME, Murad MH, Utz A, Wass JA, Endocrine S (2014) Acromegaly: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 99(11):3933–3951. https://doi.org/10.1210/jc.2014-2700

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Molitch ME, Clemmons DR, Malozowski S, Merriam GR, Vance ML, Endocrine S (2011) Evaluation and treatment of adult growth hormone deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 96(6):1587–1609. https://doi.org/10.1210/jc.2011-0179

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Toogood AA, Beardwell CG, Shalet SM (1994) The severity of growth hormone deficiency in adults with pituitary disease is related to the degree of hypopituitarism. Clin Endocrinol (Oxf) 41(4):511–516

    CAS  Article  Google Scholar 

  25. 25.

    Granada ML, Ulied A, Casanueva FF, Pico A, Lucas T, Torres E, Sanmarti A (2008) Serum IGF-I measured by four different immunoassays in patients with adult GH deficiency or acromegaly and in a control population. Clin Endocrinol (Oxf) 68(6):942–950. https://doi.org/10.1111/j.1365-2265.2007.03120.x

    CAS  Article  Google Scholar 

  26. 26.

    Krebs A, Wallaschofski H, Spilcke-Liss E, Kohlmann T, Brabant G, Volzke H, Nauck M (2008) Five commercially available insulin-like growth factor I (IGF-I) assays in comparison to the former Nichols Advantage IGF-I in a growth hormone treated population. Clin Chem Lab Med 46(12):1776–1783. https://doi.org/10.1515/CCLM.2008.349

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Giustina A, Chanson P, Kleinberg D, Bronstein MD, Clemmons DR, Klibanski A, van der Lely AJ, Strasburger CJ, Lamberts SW, Ho KK, Casanueva FF, Melmed S (2014) Expert consensus document: a consensus on the medical treatment of acromegaly. Nat Rev Endocrinol 10(4):243–248. https://doi.org/10.1038/nrendo.2014.21

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Yuen KC, Tritos NA, Samson SL, Hoffman AR, Katznelson L (2016) American association of clinical endocrinologists and american college of endocrinology disease state clinical review: update on growth hormone stimulation testing and proposed revised cut-point for the glucagon stimulation test in the diagnosis of adult growth hormone deficiency. Endocr Pract 22(10):1235–1244. https://doi.org/10.4158/EP161407.DSCR

    Article  PubMed  Google Scholar 

  29. 29.

    Hines J, Milosevic D, Ketha H, Taylor R, Algeciras-Schimnich A, Grebe SK, Singh RJ (2015) Detection of IGF-1 protein variants by use of LC-MS with high-resolution accurate mass in routine clinical analysis. Clin Chem 61(7):990–991. https://doi.org/10.1373/clinchem.2014.234799

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Wu Z, Sanders HR, Clarke NJ, Caulfield MP, Reitz RE, McPhaul MJ (2016) Identification of circulating IGF-1 polymorphisms by high resolution LC-MS. In: 98th Annual Meeting of the Endocrine Society, Boston, Massachusetts, April 1–4, p. Poster SAT 017

  31. 31.

    Algeciras-Schimnich A, Bruns DE, Boyd JC, Bryant SC, La Fortune KA, Grebe SK (2013) Failure of current laboratory protocols to detect lot-to-lot reagent differences: findings and possible solutions. Clin Chem 59(8):1187–1194. https://doi.org/10.1373/clinchem.2013.205070

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Varewijck AJ, Lamberts SW, van der Lely AJ, Neggers SJ, Hofland LJ, Janssen JA (2015) The introduction of the IDS-iSYS total IGF-1 assay may have far-reaching consequences for diagnosis and treatment of GH deficiency. J Clin Endocrinol Metab 100(1):309–316. https://doi.org/10.1210/jc.2014-2558

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Vogeser M, Seger C (2010) Pitfalls associated with the use of liquid chromatography-tandem mass spectrometry in the clinical laboratory. Clin Chem 56(8):1234–1244. https://doi.org/10.1373/clinchem.2009.138602

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Yuen KC, Cook DM, Sahasranam P, Patel P, Ghods DE, Shahinian HK, Friedman TC (2008) Prevalence of GH and other anterior pituitary hormone deficiencies in adults with nonsecreting pituitary microadenomas and normal serum IGF-1 levels. Clin Endocrinol (Oxf) 69(2):292–298. https://doi.org/10.1111/j.1365-2265.2008.03201.x

    CAS  Article  Google Scholar 

  35. 35.

    Hartman ML, Crowe BJ, Biller BM, Ho KK, Clemmons DR, Chipman JJ (2002) Which patients do not require a GH stimulation test for the diagnosis of adult GH deficiency? J Clin Endocrinol Metab 87(2):477–485

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Littley MD, Shalet SM, Beardwell CG, Ahmed SR, Applegate G, Sutton ML (1989) Hypopituitarism following external radiotherapy for pituitary tumours in adults. Q J Med 70(262):145–160

    CAS  PubMed  Google Scholar 

Download references


The authors thank Dr. Michael P. Caulfield (Quest Diagnostics) for edits and manuscript discussion and Ms. Shira Berman (Cedars-Sinai Medical Center) for manuscript preparation.


Support was provided by the Doris Factor Molecular Endocrinology Laboratory at Cedars-Sinai Medical Center. Assays were performed by Quest Diagnostics, Inc. The funding sources had no role in study design, data analysis, or decision to publish.

Author information



Corresponding author

Correspondence to Vivien Bonert.

Ethics declarations

Conflict of interest

Vivien Bonert declares that she has no conflict of interest. John Carmichael declares that he has no conflict of interest. Zengru Wu is an employee of Quest Diagnostics, Inc. James Mirocha declares that he has no conflict of interest. Daniel Perez declares that he has no conflict of interest. Nigel Clarke is an employee of Quest Diagnostics, Inc. Richard Reitz is an employee of Quest Diagnostics, Inc. Michael McPhaul is an employee of Quest Diagnostics, Inc. Adam Mamelak declares that he has no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bonert, V., Carmichael, J., Wu, Z. et al. Discordance between mass spectrometry and immunometric IGF-1 assay in pituitary disease: a prospective study. Pituitary 21, 65–75 (2018). https://doi.org/10.1007/s11102-017-0849-z

Download citation


  • Insulin-like growth factor
  • Pituitary disease
  • Mass spectrometry
  • Immunoassay