Melmed S (2011) Pathogenesis of pituitary tumors. Nat Rev Endocrinol 7:257–266
CAS
Article
PubMed
Google Scholar
Cooper O, Melmed S (2012) Subclinical hyperfunctioning pituitary adenomas: the silent tumors. Best Pract Res Clin Endocrinol Metab 26:447–460
CAS
Article
PubMed
PubMed Central
Google Scholar
Nieman LK, Ilias I (2005) Evaluation and treatment of Cushing’s syndrome. Am J Med 118:1340–1346
Article
PubMed
Google Scholar
Seltzer J, Ashton CE, Scotton TC et al (2015) Gene and protein expression in pituitary corticotroph adenomas: a systematic review of the literature. Neurosurg Focus 38:E17
Article
PubMed
Google Scholar
Syro LV, Rotondo F, Cusimano MD et al (2015) Current status on histological classification in Cushing’s disease. Pituitary 18:217–224
Article
PubMed
Google Scholar
George DH, Scheithauer BW, Kovacs K et al (2003) Crooke’s cell adenoma of the pituitary: an aggressive variant of corticotroph adenoma. Am J Surg Pathol 27:1330–1336
Article
PubMed
Google Scholar
Scheithauer BW, Jaap AJ, Horvath E et al (2000) Clinically silent corticotroph tumors of the pituitary gland. Neurosurgery 47:723-9-30
Google Scholar
Gomez-hernandez K, Ezzat S, Asa SL, Mete O (2015) Clinical implications of accurate subtyping of pituitary adenomas: perspectives from the treating physician. Turkish J Pathol 31:4–17
Google Scholar
Cooper O, Ben-Shlomo A, Bonert V et al (2010) Silent corticogonadotroph adenomas: clinical and cellular characteristics and long-term outcomes. Horm Cancer 1:80–92
CAS
Article
PubMed
PubMed Central
Google Scholar
Saeger W, Honegger J, Theodoropoulou M et al (2016) Clinical impact of the current WHO classification of pituitary adenomas. Endocr Pathol 27:104–114
CAS
Article
PubMed
Google Scholar
Felix IA, Horvath E, Kovacs K (1981) Massive Crooke’s hyalinization in corticotroph cell adenomas of the human pituitary: a histological, immunocytological, and electron microscopic study of three cases. Acta Neurochir 58:235–243
CAS
Article
PubMed
Google Scholar
Di Ieva A, Davidson JM, Syro LV et al (2015) Crooke’s cell tumors of the pituitary. Neurosurgery 76:616–622
Article
PubMed
Google Scholar
Rotondo F, Cusimano M, Scheithauer BW et al (2012) Atypical, invasive, recurring Crooke cell adenoma of the pituitary. Hormones 11:94–100
PubMed
Google Scholar
Raverot G, Jouanneau E, Trouillas J (2014) Management of endocrine disease: clinicopathological classification and molecular markers of pituitary tumours for personalized therapeutic strategies. Eur J Endocrinol 170:R121–R132
CAS
Article
PubMed
Google Scholar
Lloyd RV, Kovacs K, Young WF Jr, Farrell WE, Asa SL (2004) Pituitary tumours. In: DeLellis RA, Lloyd RV, Heitz PU, Eng C (eds) World Health Organization classification of tumours: tumours of endocrine organs IARC Press, Lyon
Google Scholar
Mete O, Asa SL (2012) Clinicopathological correlations in pituitary adenomas. Brain Pathol 22:443–453
Article
PubMed
Google Scholar
Mete O, Ezzat S, Asa SL (2012) Biomarkers of aggressive pituitary adenomas. J Mol Endocrinol 49:R69–R78
CAS
Article
PubMed
Google Scholar
Coli A, Asa SL, Fadda G et al (2016) Minichromosome maintenance protein 7 as prognostic marker of tumor aggressiveness in pituitary adenoma patients. Eur J Endocrinol 174:307–314
CAS
Article
PubMed
Google Scholar
Di Leva G, Garofalo M, Croce CM (2014) microRNAs in cancer. Annu Rev Pathol 9:287–314
CAS
Article
PubMed
Google Scholar
Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858
CAS
Article
PubMed
Google Scholar
Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233
CAS
Article
PubMed
PubMed Central
Google Scholar
Petrocca F, Visone R, Onelli MR et al (2008) E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 13:272–286
CAS
Article
PubMed
Google Scholar
Li Y, Tan W, Neo TWL et al (2009) Role of the miR-106b-25 microRNA cluster in hepatocellular carcinoma. Cancer Sci 100:1234–1242
CAS
Article
PubMed
Google Scholar
Kan T, Sato F, Ito T et al (2009) The miR-106b-25 polycistron, activated by genomic amplification, functions as an oncogene by suppressing p21 and Bim. Gastroenterology 136:1689–1700
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang H, Liu J, Zong Y et al (2010) miR-106b aberrantly expressed in a double transgenic mouse model for Alzheimer’s disease targets TGF-β type II receptor. Brain Res 1357:166–174
CAS
Article
PubMed
Google Scholar
Poliseno L, Salmena L, Riccardi L, et al (2010) Identification of the miR-106b ~ 25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal 3:ra29
Article
PubMed
PubMed Central
Google Scholar
Khuu C, Utheim TP, Sehic A (2016) The three paralogous MicroRNA clusters in development and disease, miR-17-92, miR-106a-363, and miR-106b-25. Scientifica 2016:e1379643
Article
Google Scholar
Di Leva A, Rotondo F, Syro LV et al (2014) Aggressive pituitary adenomas diagnosis and emerging treatments. Nat Rev Endocrinol 10:423–435
Article
Google Scholar
Knosp E, Steiner E, Kitz K, Matula C (1993) Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery 33:610-617-618
Google Scholar
Righi A, Morandi L, Leonard E et al (2013) Galectin-3 expression in pituitary adenomas as a marker of aggressive behavior. Hum Pathol 44:2400–2409
CAS
Article
PubMed
Google Scholar
Ding Y, Wu H, Warden C, et al (2016) Gene expression differences in prostate cancers between young and old men. PLoS Genet 12:e1006477
Article
PubMed
PubMed Central
Google Scholar
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25:402–408
CAS
Article
PubMed
Google Scholar
Jiang X, Zhang X, (2013) The molecular pathogenesis of pituitary adenomas: an update. Endocrinol Metab 28:245–254
Article
Google Scholar
Gentilin E, Uberti E degli, Zatelli MC (2016) MicroRNAs in the pituitary. Best Pract Res Clin Endocrinol Metab 30:629–639
CAS
Article
PubMed
Google Scholar
Wierinckx A, Roche M, Legras-Lachuer C et al (2017) MicroRNAs in pituitary tumors. Mol Cell Endocrinol. doi:10.1016/j.mce.2017.01.021
PubMed
Google Scholar
Bottoni A, Piccin D, Tagliati F et al (2005) miR-15a and miR-16-1 down-regulation in pituitary adenomas. J Cell Physiol 204:280–285
CAS
Article
PubMed
Google Scholar
Bottoni A, Zatelli MC, Ferracin M et al (2007) Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas. J Cell Physiol 210:370–377
CAS
Article
PubMed
Google Scholar
Stilling G, Sun Z, Zhang S et al (2010) MicroRNA expression in ACTH-producing pituitary tumors: up-regulation of microRNA-122 and -493 in pituitary carcinomas. Endocrine 38:67–75
CAS
Article
PubMed
Google Scholar
Amaral FC, Torres N, Saggioro F et al (2009) MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J Clin Endocrinol Metab 94:320–323
CAS
Article
PubMed
Google Scholar
Gentilin E, Tagliati F, Filieri C et al (2013) miR-26a plays an important role in cell cycle regulation in ACTH-secreting pituitary adenomas by modulating protein kinase Cδ. Endocrinology 154:1690–1700
CAS
Article
PubMed
PubMed Central
Google Scholar
Qian Z R, Asa SL, Siom H, et al (2009) Overexpression of HMGA2 relates to reduction of the let-7 and its relationship to clinicopathological features in pituitary adenomas. Mod Pathol 22:431–441
CAS
Article
PubMed
Google Scholar
Zhou K, Zhang T, Fan Y, et al (2016) MicroRNA-106b promotes pituitary tumor cell proliferation and invasion through PI3K/AKT signaling pathway by targeting PTEN. Tumour Biol 37:13469–13477
CAS
Article
PubMed
Google Scholar
Wei Z, Zhou C, Liu M et al (2015) MicroRNA involvement in a metastatic non-functioning pituitary carcinoma. Pituitary 18:710–721
CAS
Article
PubMed
Google Scholar
Liao C, Chen W, Fan X et al (2013) MicroRNA-200c inhibits apoptosis in pituitary adenoma cells by targeting the PTEN/Akt signaling pathway. Oncol Res 21:129–136
Article
PubMed
Google Scholar
Shi X, Tao B, He H et al (2012) MicroRNAs-based network: a novel therapeutic agent in pituitary adenoma. Med Hypotheses 78:380–384
CAS
Article
PubMed
Google Scholar
Chen C-H, Xiao W-W, Jiang X-B et al (2013) A novel marine drug, SZ-685C, induces apoptosis of MMQ pituitary tumor cells by downregulating miR-200c. Curr Med Chem 20:2145–2154
CAS
Article
PubMed
Google Scholar
Palumbo T, Faucz FR, Azevedo M et al (2013) Functional screen analysis reveals miR-26b miR-128 as central regulators of pituitary somatomammotrophic tumor growth through activation of the PTEN-AKT pathway. Oncogene 32(13):1651–1659
CAS
Article
PubMed
Google Scholar
Musat M, Korbonits M, Kola B et al (2005) Enhanced protein kinase B/Akt signalling in pituitary tumours. Endocr Relat Cancer 12:423–433
CAS
Article
PubMed
Google Scholar
Monsalves E, Juraschka K, Tateno T et al (2014) The PI3K/AKT/mTOR pathway in the pathophysiology and treatment of pituitary adenomas. Endocr Relat Cancer 21:R331–R344
CAS
Article
PubMed
Google Scholar
Butz H, Likó I, Czirják S et al (2011) MicroRNA profile indicates downregulation of the TGFβ pathway in sporadic non-functioning pituitary adenomas. Pituitary 14:112–124
CAS
Article
PubMed
Google Scholar
Smith AL, Iwanaga R, Drasin DJ et al (2012) The miR-106b-25 cluster targets Smad7, activates TGF-β signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer. Oncogene 31:5162–5171
CAS
Article
PubMed
PubMed Central
Google Scholar
Shang X, Li G, Liu H et al (2016) Comprehensive circular RNA profiling reveals that hsa_circ_0005075, a new circular RNA Biomarker, is involved in hepatocellular carcinoma development. Medicine 95:e3811
CAS
Article
PubMed
PubMed Central
Google Scholar
Li G, Qiu Y, Su Z et al (2013) Genome-wide analyses of radioresistance-associated mirna expression profile in nasopharyngeal carcinoma using next generation deep sequencing. PLoS One 8:e84486
Article
PubMed
PubMed Central
Google Scholar
Wang Y, Lippman SM, Minna JD et al (2012) Pathway-based serum microRNA profiling and late-stage nonsmall cell lung cancer survival. In: Proceedings of the 103rd annual meeting of the American Association for Cancer Research, vol 72. AACR, Chicago, IL. Philadelphia
Wang Y, Gu J, Roth JA et al (2013) Pathway-based serum microRNA profiling and survival in patients with advanced stage non-small cell lung cancer. Cancer Res 73:4801–4809
CAS
Article
PubMed
PubMed Central
Google Scholar
Tye BK (1999) MCM proteins in DNA replication. Annu Rev Biochem 68:649–686
CAS
Article
PubMed
Google Scholar
Juríková M, Danihel Ľ, Polák Š, Varga I (2016) Ki67, PCNA, and MCM proteins: markers of proliferation in the diagnosis of breast cancer. Acta Histochem 118:544–552
Article
PubMed
Google Scholar
Ren B, Yu G, Tseng GC et al (2006) MCM7 amplification and overexpression are associated with prostate cancer progression. Oncogene 25:1090–1098
CAS
Article
PubMed
Google Scholar
Tamilzhalagan S, Rathinam D, Ganesan K (2017) Amplified 7q21-22 gene MCM7 and its intronic miR-25 suppress COL1A2 associated genes to sustain intestinal gastric cancer features. Mol Carcinog. doi:10.1002/mc.22614
Google Scholar
Toyokawa G, Masuda K, Daigo Y et al (2011) Minichromosome maintenance protein 7 is a potential therapeutic target in human cancer and a novel prognostic marker of non-small cell lung cancer. Mol Cancer 10:65
CAS
Article
PubMed
PubMed Central
Google Scholar
Ishibashi Y, Kinugasa T, Akagi Y et al (2014) Minichromosome maintenance protein 7 is a risk factor for recurrence in patients with Dukes C colorectal cancer. Anticancer Res 34:4569–4575
PubMed
Google Scholar
Hamamoto Y, Shomori K, Nosaka K et al (2010) Prognostic significance of Minichromosome maintenance protein 7 and Geminin expression in patients with 109 soft tissue sarcomas. Oncol Lett 1:703–709
PubMed
PubMed Central
Google Scholar
Haldar S, Roy A, Banerjee S (2014) Differential regulation of MCM7 and its intronic miRNA cluster miR-106b-25 during megakaryopoiesis induced polyploidy. RNA Biol 11:1137–1147
Article
PubMed
PubMed Central
Google Scholar
Zhao Z-N, Bai J-X, Zhou Q et al (2012) TSA suppresses miR-106b-93-25 cluster expression through downregulation of MYC and inhibits proliferation and induces apoptosis in human EMC. PLoS One 7:e45133
CAS
Article
PubMed
PubMed Central
Google Scholar
Suzuki S, Adachi A, Hiraiwa A et al (1998) Cloning and characterization of human MCM7 promoter. Gene 216:85–91
CAS
Article
PubMed
Google Scholar
Fedele M, Pierantoni GM, Visone R, Fusco A (2006) E2F1 activation is responsible for pituitary adenomas induced by HMGA2 gene overexpression. Cell Div 1:17
Article
PubMed
PubMed Central
Google Scholar
Pei L (2001) Identification of c-myc as a down-stream target for pituitary tumor-transforming gene. J Biol Chem 276:8484–8491
CAS
Article
PubMed
Google Scholar
Sikand K, Slane SD, Shukla GC (2009) Intrinsic expression of host genes and intronic miRNAs in prostate carcinoma cells. Cancer Cell Int 9:21
Article
PubMed
PubMed Central
Google Scholar
Ramalingam P, Palanichamy JK, Singh A et al (2014) Biogenesis of intronic miRNAs located in clusters by independent transcription and alternative splicing. RNA 20:76–87
CAS
Article
PubMed
PubMed Central
Google Scholar
Chuang C-H, Yang D, Bai G et al (2012) Post-transcriptional homeostasis and regulation of MCM2-7 in mammalian cells. Nucleic Acids Res 40:4914–4924
CAS
Article
PubMed
PubMed Central
Google Scholar
Takeshita A, Inoshita N, Taguchi M et al (2009) High incidence of low O6-methylguanine DNA methyltransferase expression in invasive macroadenomas of Cushing’s disease. Eur J Endocrinol 161:553–559
CAS
Article
PubMed
Google Scholar
J. Krützfeldt (2016) Strategies to use microRNAs as therapeutic targets. Best Pract Res Clin Endocrinol Metab, 30:551–561
Article
PubMed
Google Scholar