, Volume 20, Issue 1, pp 100–108 | Cite as

Somatostatin receptor ligands in the treatment of acromegaly

  • Monica R. Gadelha
  • Luiz Eduardo Wildemberg
  • Marcello D. Bronstein
  • Federico Gatto
  • Diego Ferone


First-generation somatostatin receptors ligands (SRL) are the mainstay in the medical treatment of acromegaly, however the percentage of patients controlled with these drugs significantly varies in the different studies. Many factors are involved in the resistance to SRL. In this review, we update the physiology of somatostatin and its receptors (sst), the use of SRL in the treatment of acromegaly and the factors involved in the response to these drugs. The SRL act through interaction with the sst, which up to now have been characterized as five subtypes. The first-generation SRL, octreotide and lanreotide, are considered sst2 specific and have biochemical response rates varying from 20 to 70%. Tumor volume reduction can be found in 36–75% of patients. Several factors may determine the response to these drugs, such as sst, AIP, E-cadherin, ZAC1, filamin A and β-arrestin expression in the somatotropinomas. In patients resistant to first-generation SRL, alternative medical treatment options include: SRL high dose regimens, SRL in combination with cabergoline or pegvisomant, or the use of pasireotide. Pasireotide is a next-generation SRL with a broader pattern of interaction with sst. In the light of the recent increase of treatment options in acromegaly and the deeper knowledge of the determinants of response to the current first-line therapy, a shift from a trial-and-error treatment to a personalized one could be possible.


Somatostatin receptor ligands Acromegaly Somatostatin receptors Octreotide Lanreotide Pasireotide 


Compliance with ethical standards

Conflict of interest

MRG has received unrestricted research grants and lecture fees from Novartis, Ipsen and Pfizer, has participated on advisory boards of Novartis and Ionis and is PI in clinical trials by Novartis and Ipsen. LEW has no conflicts of interest to declare. MDB is speaker for Ipsen and Novartis; member of Steering Committees of Chiasma, Ipsen and Novartis; PI of clinical trials of Ipsen, Novartis and Pfizer. FG is speaker for Novartis and participated on advisory boards of Novartis, AMCo Ltd. and IONIS Pharmaceuticals. DF is speaker, participated on advisory boards and received research grants from Novartis and Ipsen.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors as it is a review.


  1. 1.
    Katznelson L, Laws ER Jr, Melmed S, Molitch ME, Murad MH, Utz A, Wass JA (2014) Acromegaly: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 99(11):3933–3951. doi: 10.1210/jc.2014-2700 CrossRefPubMedGoogle Scholar
  2. 2.
    Jane JA Jr, Starke RM, Elzoghby MA, Reames DL, Payne SC, Thorner MO, Marshall JC, Laws ER Jr, Vance ML (2011) Endoscopic transsphenoidal surgery for acromegaly: remission using modern criteria, complications, and predictors of outcome. J Clin Endocrinol Metab 96(9):2732–2740. doi: 10.1210/jc.2011-0554 CrossRefPubMedGoogle Scholar
  3. 3.
    Nomikos P, Buchfelder M, Fahlbusch R (2005) The outcome of surgery in 668 patients with acromegaly using current criteria of biochemical ‘cure’. Eur J Endocrinol 152(3):379–387. doi: 10.1530/eje.1.01863 CrossRefPubMedGoogle Scholar
  4. 4.
    Starke RM, Raper DM, Payne SC, Vance ML, Oldfield EH, Jane JA Jr (2013) Endoscopic vs microsurgical transsphenoidal surgery for acromegaly: outcomes in a concurrent series of patients using modern criteria for remission. J Clin Endocrinol Metab 98(8):3190–3198. doi: 10.1210/jc.2013-1036 CrossRefPubMedGoogle Scholar
  5. 5.
    Reichlin S (1983) Somatostatin. N Engl J Med 309(24):1495–1501. doi: 10.1056/NEJM198312153092406 CrossRefPubMedGoogle Scholar
  6. 6.
    Patel YC (1999) Somatostatin and its receptor family. Front Neuroendocrinol 20(3):157–198. doi: 10.1006/frne.1999.0183 CrossRefPubMedGoogle Scholar
  7. 7.
    Reubi JC, Schonbrunn A (2013) Illuminating somatostatin analog action at neuroendocrine tumor receptors. Trends Pharmacol Sci 34(12):676–688. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  8. 8.
    Duran-Prado M, Gahete MD, Martinez-Fuentes AJ, Luque RM, Quintero A, Webb SM, Benito-Lopez P, Leal A, Schulz S, Gracia-Navarro F, Malagon MM, Castano JP (2009) Identification and characterization of two novel truncated but functional isoforms of the somatostatin receptor subtype 5 differentially present in pituitary tumors. J Clin Endocrinol Metab 94(7):2634–2643. doi: 10.1210/jc.2008-2564 CrossRefPubMedGoogle Scholar
  9. 9.
    Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R (1973) Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179(4068):77–79CrossRefPubMedGoogle Scholar
  10. 10.
    Bauer W, Briner U, Doepfner W, Haller R, Huguenin R, Marbach P, Petcher TJ, Pless J (1982) SMS 201–995: a very potent and selective octapeptide analogue of somatostatin with prolonged action. Life Sci 31(11):1133–1140CrossRefPubMedGoogle Scholar
  11. 11.
    Taylor JE, Bogden AE, Moreau JP, Coy DH (1988) In vitro and in vivo inhibition of human small cell lung carcinoma (NCI-H69) growth by a somatostatin analogue. Biochem Biophys Res Commun 153(1):81–86CrossRefPubMedGoogle Scholar
  12. 12.
    Ben-Shlomo A, Melmed S (2008) Somatostatin agonists for treatment of acromegaly. Mol Cell Endocrinol 286(1–2):192–198. doi: 10.1016/j.mce.2007.11.024 CrossRefPubMedGoogle Scholar
  13. 13.
    Bruns C, Lewis I, Briner U, Meno-Tetang G, Weckbecker G (2002) SOM230: a novel somatostatin peptidomimetic with broad somatotropin release inhibiting factor (SRIF) receptor binding and a unique antisecretory profile. European J Endocrinol 146(5):707–716CrossRefGoogle Scholar
  14. 14.
    Cescato R, Loesch KA, Waser B, Macke HR, Rivier JE, Reubi JC, Schonbrunn A (2010) Agonist-biased signaling at the sst2A receptor: the multi-somatostatin analogs KE108 and SOM230 activate and antagonize distinct signaling pathways. Molecular Endocrinol 24(1):240–249. doi: 10.1210/me.2009-0321 CrossRefGoogle Scholar
  15. 15.
    Gadelha MR, Kasuki L, Korbonits M (2012) Novel pathway for somatostatin analogs in patients with acromegaly. Trends Endocrinol Metab. doi: 10.1016/j.tem.2012.11.007 PubMedGoogle Scholar
  16. 16.
    Ben-Shlomo A, Melmed S (2010) Pituitary somatostatin receptor signaling. Trends Endocrinol Metab 21(3):123–133. doi: 10.1016/j.tem.2009.12.003 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Vitali E, Peverelli E, Giardino E, Locatelli M, Lasio GB, Beck-Peccoz P, Spada A, Lania AG, Mantovani G (2014) Cyclic adenosine 3′-5′-monophosphate (cAMP) exerts proliferative and anti-proliferative effects in pituitary cells of different types by activating both cAMP-dependent protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac). Mol Cell Endocrinol 383(1–2):193–202. doi: 10.1016/j.mce.2013.12.006 CrossRefPubMedGoogle Scholar
  18. 18.
    Florio T (2008) Molecular mechanisms of the antiproliferative activity of somatostatin receptors (SSTRs) in neuroendocrine tumors. Front Biosci 13:822–840CrossRefPubMedGoogle Scholar
  19. 19.
    Barbieri F, Bajetto A, Pattarozzi A, Gatti M, Wurth R, Thellung S, Corsaro A, Villa V, Nizzari M, Florio T (2013) Peptide receptor targeting in cancer: the somatostatin paradigm. Int J Pept. doi: 10.1155/2013/926295 PubMedPubMedCentralGoogle Scholar
  20. 20.
    Theodoropoulou M, Stalla GK, Spengler D (2010) ZAC1 target genes and pituitary tumorigenesis. Mol Cell Endocrinol 326(1–2):60–65. doi: 10.1016/j.mce.2010.01.033 CrossRefPubMedGoogle Scholar
  21. 21.
    Chahal HS, Trivellin G, Leontiou CA, Alband N, Fowkes RC, Tahir A, Igreja SC, Chapple JP, Jordan S, Lupp A, Schulz S, Ansorge O, Karavitaki N, Carlsen E, Wass JA, Grossman AB, Korbonits M (2012) Somatostatin analogs modulate AIP in somatotroph adenomas: the role of the ZAC1 pathway. J Clin Endocrinol Metab 97(8):E1411–E1420. doi: 10.1210/jc.2012-1111 CrossRefPubMedGoogle Scholar
  22. 22.
    Moyse E, Le Dafniet M, Epelbaum J, Pagesy P, Peillon F, Kordon C, Enjalbert, A (1985) Somatostatin receptors in human growth hormone and prolactin-secreting pituitary adenomas. J Clin Endocrinol Metab 61(1):98–103. doi: 10.1210/jcem-61-1-98 CrossRefPubMedGoogle Scholar
  23. 23.
    Hofland LJ, Lamberts SW (2003) The pathophysiological consequences of somatostatin receptor internalization and resistance. Endocr Rev 24(1):28–47. doi: 10.1210/er.2000-0001 CrossRefPubMedGoogle Scholar
  24. 24.
    Cuevas-Ramos D, Fleseriu M (2014) Somatostatin receptor ligands and resistance to treatment in pituitary adenomas. J Mol Endocrinol 52(3):R223–R240. doi: 10.1530/JME-14-0011 CrossRefPubMedGoogle Scholar
  25. 25.
    Taboada GF, Luque RM, Bastos W, Guimaraes RF, Marcondes JB, Chimelli LM, Fontes R, Mata PJ, Filho PN, Carvalho DP, Kineman RD, Gadelha MR (2007) Quantitative analysis of somatostatin receptor subtype (SSTR1-5) gene expression levels in somatotropinomas and non-functioning pituitary adenomas. Eur J Endocrinol 156(1):65–74. doi: 10.1530/eje.1.02313 CrossRefPubMedGoogle Scholar
  26. 26.
    Gatto F, Feelders R, van der Pas R, Kros JM, Dogan F, van Koetsveld PM, van der Lelij AJ, Neggers SJ, Minuto F, de Herder W, Lamberts SW, Ferone D, Hofland LJ (2013) beta-Arrestin 1 and 2 and G protein-coupled receptor kinase 2 expression in pituitary adenomas: role in the regulation of response to somatostatin analogue treatment in patients with acromegaly. Endocrinology 154(12):4715–4725. doi: 10.1210/en.2013-1672 CrossRefPubMedGoogle Scholar
  27. 27.
    Chinezu L, Vasiljevic A, Jouanneau E, Francois P, Borda A, Trouillas J, Raverot G (2014) Expression of somatostatin receptors, SSTR2A and SSTR5, in 108 endocrine pituitary tumors using immunohistochemical detection with new specific monoclonal antibodies. Hum Pathol 45(1):71–77. doi: 10.1016/j.humpath.2013.08.007 CrossRefPubMedGoogle Scholar
  28. 28.
    Casar-Borota O, Heck A, Schulz S, Nesland JM, Ramm-Pettersen J, Lekva T, Alafuzoff I, Bollerslev J (2013) Expression of SSTR2a, but not of SSTRs 1, 3, or 5 in somatotroph adenomas assessed by monoclonal antibodies Was reduced by octreotide and correlated With the acute and long-term effects of octreotide. J Clin Endocr Metab 98(11):E1730–E1739. doi: 10.1210/Jc.2013-2145 CrossRefPubMedGoogle Scholar
  29. 29.
    Colao A, Auriemma RS, Lombardi G, Pivonello R (2011) Resistance to somatostatin analogs in acromegaly. Endocr Rev 32(2):247–271. doi: 10.1210/er.2010-0002 CrossRefPubMedGoogle Scholar
  30. 30.
    Plockinger U, Albrecht S, Mawrin C, Saeger W, Buchfelder M, Petersenn S, Schulz S (2008) Selective loss of somatostatin receptor 2 in octreotide-resistant growth hormone-secreting adenomas. J Clin Endocrinol Metab 93(4):1203–1210. doi: 10.1210/jc.2007-1986 CrossRefPubMedGoogle Scholar
  31. 31.
    Wildemberg LE, Neto LV, Costa DF, Nasciuti LE, Takiya CM, Alves LM, Rebora A, Minuto F, Ferone D, Gadelha MR (2013) Low somatostatin receptor subtype 2, but not dopamine receptor subtype 2 expression predicts the lack of biochemical response of somatotropinomas to treatment with somatostatin analogs. J Endocrinol Invest 36(1):38–43. doi: 10.3275/8305 PubMedGoogle Scholar
  32. 32.
    Hofland LJ, van der Hoek J, van Koetsveld PM, de Herder WW, Waaijers M, Sprij-Mooij D, Bruns C, Weckbecker G, Feelders R, van der Lely AJ, Beckers A, Lamberts SW (2004) The novel somatostatin analog SOM230 is a potent inhibitor of hormone release by growth hormone- and prolactin-secreting pituitary adenomas in vitro. J Clin Endocrinol Metab 89(4):1577–1585CrossRefPubMedGoogle Scholar
  33. 33.
    Gatto F, Feelders RA, van der Pas R, Kros JM, Waaijers M, Sprij-Mooij D, Neggers SJ, van der Lelij AJ, Minuto F, Lamberts SW, de Herder WW, Ferone D, Hofland LJ (2013) Immunoreactivity score using an anti-sst2A receptor monoclonal antibody strongly predicts the biochemical response to adjuvant treatment with somatostatin analogs in acromegaly. J Clin Endocrinol Metab 98(1):E66–E71. doi: 10.1210/jc.2012-2609 CrossRefPubMedGoogle Scholar
  34. 34.
    Fougner SL, Casar-Borota O, Heck A, Berg JP, Bollerslev J (2012) Adenoma granulation pattern correlates with clinical variables and effect of somatostatin analogue treatment in a large series of patients with acromegaly. Clin Endocrinol 76(1):96–102. doi: 10.1111/j.1365-2265.2011.04163.x CrossRefGoogle Scholar
  35. 35.
    Heck A, Ringstad G, Fougner SL, Casar-Borota O, Nome T, Ramm-Pettersen J, Bollerslev J (2012) Intensity of pituitary adenoma on T2-weighted magnetic resonance imaging predicts the response to octreotide treatment in newly diagnosed acromegaly. Clin Endocrinol 77(1):72–78. doi: 10.1111/j.1365-2265.2011.04286.x CrossRefGoogle Scholar
  36. 36.
    Potorac I, Petrossians P, Daly AF, Alexopoulou O, Borot S, Sahnoun-Fathallah M, Castinetti F, Devuyst F, Jaffrain-Rea ML, Briet C, Luca F, Lapoirie M, Zoicas F, Simoneau I, Diallo AM, Muhammad A, Kelestimur F, Nazzari E, Centeno RG, Webb SM, Nunes ML, Hana V, Pascal-Vigneron V, Ilovayskaya I, Nasybullina F, Achir S, Ferone D, Neggers SJ, Delemer B, Petit JM, Schofl C, Raverot G, Goichot B, Rodien P, Corvilain B, Brue T, Schillo F, Tshibanda L, Maiter D, Bonneville JF, Beckers A (2016) T2-weighted MRI signal predicts hormone and tumor responses to somatostatin analogs in acromegaly. Endocr Relat Cancer 23(11):871–881. doi: 10.1530/ERC-16-0356 CrossRefPubMedGoogle Scholar
  37. 37.
    Gatto F, Hofland LJ (2011) The role of somatostatin and dopamine D2 receptors in endocrine tumors. Endocr Relat Cancer 18(6):R233–R251. doi: 10.1530/ERC-10-0334 CrossRefPubMedGoogle Scholar
  38. 38.
    Peverelli E, Giardino E, Treppiedi D, Vitali E, Cambiaghi V, Locatelli M, Lasio GB, Spada A, Lania AG, Mantovani G (2014) Filamin A (FLNA) plays an essential role in somatostatin receptor 2 (SST2) signaling and stabilization after agonist stimulation in human and rat somatotroph tumor cells. Endocrinology 155(8):2932–2941. doi: 10.1210/en.2014-1063 CrossRefPubMedGoogle Scholar
  39. 39.
    Gatto F, Biermasz NR, Feelders RA, Kros JM, Dogan F, van der Lely AJ, Neggers SJ, Lamberts SW, Pereira AM, Ferone D, Hofland LJ (2016) Low beta-arrestin expression correlates with the responsiveness to long-term somatostatin analog treatment in acromegaly. Eur J Endocrinol 174(5):651–662. doi: 10.1530/EJE-15-0391 CrossRefPubMedGoogle Scholar
  40. 40.
    Lesche S, Lehmann D, Nagel F, Schmid HA, Schulz S (2009) Differential effects of octreotide and pasireotide on somatostatin receptor internalization and trafficking in vitro. J Clin Endocrinol Metab 94(2):654–661. doi: 10.1210/jc.2008-1919 CrossRefPubMedGoogle Scholar
  41. 41.
    Grant M, Alturaihi H, Jaquet P, Collier B, Kumar U (2008) Cell growth inhibition and functioning of human somatostatin receptor type 2 are modulated by receptor heterodimerization. Molecular endocrinology 22(10):2278–2292. doi: 10.1210/me.2007-0334 CrossRefPubMedGoogle Scholar
  42. 42.
    Shimon I, Yan X, Taylor JE, Weiss MH, Culler MD, Melmed S (1997) Somatostatin receptor (SSTR) subtype-selective analogues differentially suppress in vitro growth hormone and prolactin in human pituitary adenomas. Novel potential therapy for functional pituitary tumors. J Clin Invest 100(9):2386–2392. doi: 10.1172/JCI119779 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Saveanu A, Gunz G, Dufour H, Caron P, Fina F, Ouafik L, Culler MD, Moreau JP, Enjalbert A, Jaquet P (2001) Bim-23244, a somatostatin receptor subtype 2- and 5-selective analog with enhanced efficacy in suppressing growth hormone (GH) from octreotide-resistant human GH-secreting adenomas. J Clin Endocrinol Metab 86(1):140–145PubMedGoogle Scholar
  44. 44.
    Taboada GF, Luque RM, Neto LV, Machado Ede O, Sbaffi BC, Domingues RC, Marcondes JB, Chimelli LM, Fontes R, Niemeyer P, de Carvalho DP, Kineman RD, Gadelha MR (2008) Quantitative analysis of somatostatin receptor subtypes (1–5) gene expression levels in somatotropinomas and correlation to in vivo hormonal and tumor volume responses to treatment with octreotide LAR. Eur J Endocrinol 158(3):295–303. doi: 10.1530/EJE-07-0562 CrossRefPubMedGoogle Scholar
  45. 45.
    Luque RM, Ibanez-Costa A, Neto LV, Taboada GF, Hormaechea-Agulla D, Kasuki L, Venegas-Moreno E, Moreno-Carazo A, Galvez MA, Soto-Moreno A, Kineman RD, Culler MD, Gahete MD, Gadelha MR, Castano JP (2015) Truncated somatostatin receptor variant sst5TMD4 confers aggressive features (proliferation, invasion and reduced octreotide response) to somatotropinomas. Cancer Lett 359(2):299–306. doi: 10.1016/j.canlet.2015.01.037 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Daly AF, Tichomirowa MA, Petrossians P, Heliovaara E, Jaffrain-Rea ML, Barlier A, Naves LA, Ebeling T, Karhu A, Raappana A, Cazabat L, De Menis E, Montanana CF, Raverot G, Weil RJ, Sane T, Maiter D, Neggers S, Yaneva M, Tabarin A, Verrua E, Eloranta E, Murat A, Vierimaa O, Salmela PI, Emy P, Toledo RA, Sabate MI, Villa C, Popelier M, Salvatori R, Jennings J, Longas AF, Labarta Aizpun JI, Georgitsi M, Paschke R, Ronchi C, Valimaki M, Saloranta C, De Herder W, Cozzi R, Guitelman M, Magri F, Lagonigro MS, Halaby G, Corman V, Hagelstein MT, Vanbellinghen JF, Barra GB, Gimenez-Roqueplo AP, Cameron FJ, Borson-Chazot F, Holdaway I, Toledo SP, Stalla GK, Spada A, Zacharieva S, Bertherat J, Brue T, Bours V, Chanson P, Aaltonen LA, Beckers, A (2010) Clinical characteristics and therapeutic responses in patients with germ-line AIP mutations and pituitary adenomas: an international collaborative study. J Clin Endocrinol Metab 95(11):E373–E383. doi: 10.1210/jc.2009-2556 CrossRefPubMedGoogle Scholar
  47. 47.
    Kasuki L, Vieira Neto L, Wildemberg LE, Colli LM, de Castro M, Takiya CM, Gadelha MR (2012) AIP expression in sporadic somatotropinomas is a predictor of the response to octreotide LAR therapy independent of SSTR2 expression. Endocr Relat Cancer 19(3):L25–L29. doi: 10.1530/ERC-12-0020 CrossRefPubMedGoogle Scholar
  48. 48.
    Iacovazzo D, Carlsen E, Lugli F, Chiloiro S, Piacentini S, Bianchi A, Giampietro A, Mormando M, Clear AJ, Doglietto F, Anile C, Maira G, Lauriola L, Rindi G, Roncaroli F, Pontecorvi A, Korbonits M, De Marinis, L (2016) Factors predicting pasireotide responsiveness in somatotroph pituitary adenomas resistant to first-generation somatostatin analogues: an immunohistochemical study. Eur J Endocrinol 174(2):241–250. doi: 10.1530/EJE-15-0832 CrossRefPubMedGoogle Scholar
  49. 49.
    Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L (1989) GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 340(6236):692–696. doi: 10.1038/340692a0 CrossRefPubMedGoogle Scholar
  50. 50.
    Barlier A, Gunz G, Zamora AJ, Morange-Ramos I, Figarella-Branger D, Dufour H, Enjalbert A, Jaquet P (1998) Pronostic and therapeutic consequences of Gs alpha mutations in somatotroph adenomas. J Clin Endocrinol Metab 83(5):1604–1610PubMedGoogle Scholar
  51. 51.
    Wildemberg LE, Gadelha MR (2016) Pasireotide for the treatment of acromegaly. Expert Opin Pharmacother 17(4):579–588. doi: 10.1517/14656566.2016.1146688 CrossRefPubMedGoogle Scholar
  52. 52.
    Lamberts SW, Uitterlinden P, Verschoor L, van Dongen KJ, del Pozo E (1985) Long-term treatment of acromegaly with the somatostatin analogue SMS 201–995. N Engl J Med 313(25):1576–1580. doi: 10.1056/NEJM198512193132504 CrossRefPubMedGoogle Scholar
  53. 53.
    Carmichael JD, Bonert VS, Nuno M, Ly D, Melmed S (2014) Acromegaly clinical trial methodology impact on reported biochemical efficacy rates of somatostatin receptor ligand treatments: a meta-analysis. J Clin Endocrinol Metab 99(5):1825–1833. doi: 10.1210/jc.2013-3757 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Freda PU, Katznelson L, van der Lely AJ, Reyes CM, Zhao S, Rabinowitz D (2005) Long-acting somatostatin analog therapy of acromegaly: a meta-analysis. J Clin Endocrinol Metab 90(8):4465–4473CrossRefPubMedGoogle Scholar
  55. 55.
    Colao A, Ferone D, Marzullo P, Cappabianca P, Cirillo S, Boerlin V, Lancranjan I, Lombardi G (2001) Long-term effects of depot long-acting somatostatin analog octreotide on hormone levels and tumor mass in acromegaly. J Clin Endocrinol Metab 86(6):2779–2786. doi: 10.1210/jcem.86.6.7556 PubMedGoogle Scholar
  56. 56.
    Colao A, Bronstein MD, Freda P, Gu F, Shen CC, Gadelha M, Fleseriu M, van der Lely AJ, Farrall AJ, Hermosillo Resendiz K, Ruffin M, Chen Y, Sheppard M (2014) Pasireotide versus octreotide in acromegaly: a head-to-head superiority study. J Clin Endocrinol Metab 99(3):791–799. doi: 10.1210/jc.2013-2480 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Colao A, Cappabianca P, Caron P, De Menis E, Farrall AJ, Gadelha MR, Hmissi A, Rees A, Reincke M, Safari M, T’Sjoen G, Bouterfa H, Cuneo RC (2009) Octreotide LAR vs. surgery in newly diagnosed patients with acromegaly: a randomized, open-label, multicentre study. Clin Endocrinol 70(5):757–768CrossRefGoogle Scholar
  58. 58.
    Melmed S, Cook D, Schopohl J, Goth MI, Lam KS, Marek J (2010) Rapid and sustained reduction of serum growth hormone and insulin-like growth factor-1 in patients with acromegaly receiving lanreotide autogel therapy: a randomized, placebo-controlled, multicenter study with a 52 week open extension. Pituitary 13(1):18–28. doi: 10.1007/s11102-009-0191-1 CrossRefPubMedGoogle Scholar
  59. 59.
    Mercado M, Borges F, Bouterfa H, Chang TC, Chervin A, Farrall AJ, Patocs A, Petersenn S, Podoba J, Safari M, Wardlaw J (2007) A prospective, multicentre study to investigate the efficacy, safety and tolerability of octreotide LAR (long-acting repeatable octreotide) in the primary therapy of patients with acromegaly. Clin Endocrinol 66(6):859–868CrossRefGoogle Scholar
  60. 60.
    Colao A, Auriemma RS, Pivonello R, Kasuki L, Gadelha MR (2016) Interpreting biochemical control response rates with first-generation somatostatin analogues in acromegaly. Pituitary 19(3):235–247. doi: 10.1007/s11102-015-0684-z10.1007/s11102-015-0684-z CrossRefPubMedGoogle Scholar
  61. 61.
    Tutuncu Y, Berker D, Isik S, Ozuguz U, Akbaba G, Kucukler FK, Aydin Y, Guler S (2012) Comparison of octreotide LAR and lanreotide autogel as post-operative medical treatment in acromegaly. Pituitary 15(3):398–404. doi: 10.1007/s11102-011-0335-y CrossRefPubMedGoogle Scholar
  62. 62.
    Caron PJ, Bevan JS, Petersenn S, Flanagan D, Tabarin A, Prevost G, Maisonobe P, Clermont A (2014) Tumor shrinkage with lanreotide Autogel 120 mg as primary therapy in acromegaly: results of a prospective multicenter clinical trial. J Clin Endocrinol Metab 99(4):1282–1290. doi: 10.1210/jc.2013-3318 CrossRefPubMedGoogle Scholar
  63. 63.
    Giustina A, Mazziotti G, Torri V, Spinello M, Floriani I, Melmed S (2012) Meta-analysis on the effects of octreotide on tumor mass in acromegaly. PLoS ONE 7(5):e36411. doi: 10.1371/journal.pone.0036411PONE-D-11-26061 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Melmed S, Sternberg R, Cook D, Klibanski A, Chanson P, Bonert V, Vance ML, Rhew D, Kleinberg D, Barkan A (2005) A critical analysis of pituitary tumor shrinkage during primary medical therapy in acromegaly. J Clin Endocrinol Metab 90(7):4405–4410. doi: 10.1210/jc.2004-2466 CrossRefPubMedGoogle Scholar
  65. 65.
    Correa LL, Taboada GF, Van Haute FR, Casini AF, Balarini GA, Vieira Neto L, Machado Ede O, Fontes R, Andrade CC, Schrank Y, Gadelha MR (2008) Evaluation of glucose metabolism in acromegalic patients before and after treatment with octreotide LAR. Arq Bras Endocrinol Metabol 52(1):55–64CrossRefPubMedGoogle Scholar
  66. 66.
    Giustina A, Bonadonna S, Bugari G, Colao A, Cozzi R, Cannavo S, de Marinis L, Degli Uberti E, Bogazzi F, Mazziotti G, Minuto F, Montini M, Ghigo E (2009) High-dose intramuscular octreotide in patients with acromegaly inadequately controlled on conventional somatostatin analogue therapy: a randomised controlled trial. Eur J Endocrinol 161(2):331–338. doi: 10.1530/EJE-09-0372 CrossRefPubMedGoogle Scholar
  67. 67.
    Mazziotti G, Porcelli T, Bogazzi F, Bugari G, Cannavo S, Colao A, Cozzi R, De Marinis L, degli Uberti E, Grottoli S, Minuto F, Montini M, Spinello M, Giustina, A (2011) Effects of high-dose octreotide LAR on glucose metabolism in patients with acromegaly inadequately controlled by conventional somatostatin analog therapy. Eur J Endocrinol 164(3):341–347. doi: 10.1530/EJE-10-0811 CrossRefPubMedGoogle Scholar
  68. 68.
    Gadelha MR, Bronstein MD, Brue T, Coculescu M, Fleseriu M, Guitelman M, Pronin V, Raverot G, Shimon I, Lievre KK, Fleck J, Aout M, Pedroncelli AM, Colao A, Pasireotide CSG (2014) Pasireotide versus continued treatment with octreotide or lanreotide in patients with inadequately controlled acromegaly (PAOLA): a randomised, phase 3 trial. Lancet Diabetes Endocrinol 2(11):875–884. doi: 10.1016/S2213-8587(14)70169-X CrossRefPubMedGoogle Scholar
  69. 69.
    Henry RR, Ciaraldi TP, Armstrong D, Burke P, Ligueros-Saylan M, Mudaliar S (2013) Hyperglycemia associated with pasireotide: results from a mechanistic study in healthy volunteers. J Clin Endocrinol Metab 98(8):3446–3453. doi: 10.1210/jc.2013-1771 CrossRefPubMedGoogle Scholar
  70. 70.
    Breitschaft A, Hu K, Hermosillo Resendiz K, Darstein C, Golor G (2014) Management of hyperglycemia associated with pasireotide (SOM230): healthy volunteer study. Diabetes Res Clin Pract 103(3):458–465. doi: 10.1016/j.diabres.2013.12.011 CrossRefPubMedGoogle Scholar
  71. 71.
    Frara S, Maffezzoni F, Mazziotti G, Giustina A (2016) Current and Emerging Aspects of Diabetes Mellitus in Acromegaly. Trends Endocrinol Metab 27(7):470–483. doi: 10.1016/j.tem.2016.04.014 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Monica R. Gadelha
    • 1
    • 2
  • Luiz Eduardo Wildemberg
    • 1
    • 2
  • Marcello D. Bronstein
    • 3
  • Federico Gatto
    • 4
  • Diego Ferone
    • 4
    • 5
  1. 1.Neuroendocrinology Research Center/Endocrinology Section, Medical School and Hospital Universitário Clementino Fraga FilhoUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Neuroendocrinology Section and Molecular Genetics Laboratory, Secretaria Estadual de Saúde do Rio de JaneiroInstituto Estadual do Cérebro Paulo NiemeyerRio de JaneiroBrazil
  3. 3.Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das ClinicasUniversity of Sao Paulo Medical SchoolSão PauloBrazil
  4. 4.Endocrinology Unit, Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical ResearchUniversity of GenoaGenoaItaly
  5. 5.IRCCS AOU San Martino-IST GenoaGenoaItaly

Personalised recommendations