Pituitary

, Volume 20, Issue 1, pp 154–168 | Cite as

Updates in outcomes of stereotactic radiation therapy in acromegaly

Review

Abstract

Purpose Treatment of acromegaly has undergone important progress in the last 20 years mainly due to the development of new medical options and advances in surgical techniques. Pituitary surgery is usually first-line therapy, and medical treatment is indicated for persistent disease, while radiation (RT) is often used as third-line therapy. The benefits of RT (tumor volume control and decreased hormonal secretion) are hampered by the long latency of the effect and the high risk of adverse effects. Stereotactic RT methods have been developed with the aim to provide more precise targeting of the tumor with better control of the radiation dose received by the adjacent brain structures. The purpose of this review is to present the updates in the efficacy and safety of pituitary RT in acromegalic patients, with an emphasis on the new stereotactic radiation techniques. Methods A systematic review was performed using PubMed and articles/abstracts and reviews detailing RT in acromegaly from 2000 to 2016 were included. Results Stereotactic radiosurgery and fractionated stereotactic RT (FSRT) for patients with persistent active acromegaly after surgery and/or during medical therapy provide comparable high rates of tumor control, i.e. stable or decrease in size of the tumor in 93–100% of patients at 5–10 years and endocrinological remission in 40–60% of patients at 5 years. Hypofractionated RT is an optimal option for tumors located near the optic structures, due to its lower toxicity for the optic nerves compared to single-dose radiosurgery. The rate of new hypopituitarism varies from 10 to 50% at 5 years and increases with the duration of follow-up. The risk for other radiation-induced complications is usually low (0–5% for new visual deficits, cranial nerves damage or brain radionecrosis and 0–1% for secondary brain tumors) and risk of stroke may be higher in FSRT. Conclusion Although the use of radiotherapy in patients with acromegaly has decreased with advances in medical treatments, it remains an effective treatment option after unsuccessful surgery and/or resistance or unavailability of medical therapy. Long-term studies evaluating secondary morbidity and mortality rate after the new stereotactic techniques are needed, in order to evaluate their potential brain-sparing effect.

Keywords

Acromegaly Stereotactic radiotherapy Radiosurgery Fractionated radiotherapy Hypofractionated radiosurgery Hypopituitarism 

Notes

Compliance with ethical standards

Conflict of interest

The author declares that she has no conflict of interest regarding this manuscript. This article does not contain any direct studies with human participants or animals performed by the author, as it was a review

References

  1. 1.
    Melmed S, Colao A, Barkan A et al (2009) Guidelines for acromegaly management: an update. J Clin Endocrinol Metab 94(5):1509–1517CrossRefPubMedGoogle Scholar
  2. 2.
    Katznelson L, Laws ER Jr, Melmed S et al (2014) Acromegaly: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 99(11):3933–3951CrossRefPubMedGoogle Scholar
  3. 3.
    Minniti G, Clarke E, Scaringi C, Enrici RM (2016) Stereotactic radiotherapy and radiosurgery for non-functioning and secreting pituitary adenomas. Rep Pract Oncol Radiother 21(4):370–378CrossRefPubMedGoogle Scholar
  4. 4.
    Parhar PK, Duckworth T, Shah P et al (2010) Decreasing temporal lobe dose with five-field intensity-modulated radiotherapy for treatment of pituitary macroadenomas. Int J Radiat Oncol Biol Phys 78(2):379–384CrossRefPubMedGoogle Scholar
  5. 5.
    Barrande G, Pittino-Lungo M, Coste J et al (2000) Hormonal and metabolic effects of radiotherapy in acromegaly: long-term results in 128 patients followed in a single center. J Clin Endocrinol Metab 85(10):3779–3785CrossRefPubMedGoogle Scholar
  6. 6.
    Biermasz NR, Dulken HV, Roelfsema F (2000) Postoperative radiotherapy in acromegaly is effective in reducing GH concentration to safe levels. Clin Endocrinol 53(3):321–327CrossRefGoogle Scholar
  7. 7.
    Brada M, Rajan B, Traish D et al (1993) The long-term efficacy of conservative surgery and radiotherapy in the control of pituitary adenomas. Clin Endocrinol 38(6):571–578CrossRefGoogle Scholar
  8. 8.
    Epaminonda P, Porretti S, Cappiello V, Beck-Peccoz P, Faglia G, Arosio M (2001) Efficacy of radiotherapy in normalizing serum IGF-I, acid-labile subunit (ALS) and IGFBP-3 levels in acromegaly. Clin Endocrinol 55(2):183–189CrossRefGoogle Scholar
  9. 9.
    Jenkins PJ, Bates P, Carson MN, Stewart PM, Wass JA (2006) Conventional pituitary irradiation is effective in lowering serum growth hormone and insulin-like growth factor-I in patients with acromegaly. J Clin Endocrinol Metab 91(4):1239–1245CrossRefPubMedGoogle Scholar
  10. 10.
    Minniti G, Jaffrain-Rea ML, Osti M et al (2005) The long-term efficacy of conventional radiotherapy in patients with GH-secreting pituitary adenomas. Clin Endocrinol 62(2):210–216CrossRefGoogle Scholar
  11. 11.
    Powell JS, Wardlaw SL, Post KD, Freda PU (2000) Outcome of radiotherapy for acromegaly using normalization of insulin-like growth factor I to define cure. J Clin Endocrinol Metab 85(5):2068–2071PubMedGoogle Scholar
  12. 12.
    Jallad RS, Musolino NR, Salgado LR, Bronstein MD (2007) Treatment of acromegaly: is there still a place for radiotherapy? Pituitary 10(1):53–59CrossRefPubMedGoogle Scholar
  13. 13.
    Gonzalez B, Vargas G, Espinosa-de-los-Monteros AL, Sosa E, Mercado M (2011) Efficacy and safety of radiotherapy in acromegaly. Arch Med Res 42(1):48–52CrossRefPubMedGoogle Scholar
  14. 14.
    Cozzi R, Barausse M, Asnaghi D, Dallabonzana D, Lodrini S, Attanasio R (2001) Failure of radiotherapy in acromegaly. Eur J Endocrinol 145(6):717–726CrossRefPubMedGoogle Scholar
  15. 15.
    Minniti G, Traish D, Ashley S, Gonsalves A, Brada M (2005) Risk of second brain tumor after conservative surgery and radiotherapy for pituitary adenoma: update after an additional 10 years. J Clin Endocrinol Metab 90(2):800–804CrossRefPubMedGoogle Scholar
  16. 16.
    Brada M, Burchell L, Ashley S, Traish D (1999) The incidence of cerebrovascular accidents in patients with pituitary adenoma. Int J Radiat Oncol Biol Phys 45(3):693–698CrossRefPubMedGoogle Scholar
  17. 17.
    Lecumberri B, Estrada J, Garcia-Uria J et al (2015) Neurocognitive long-term impact of two-field conventional radiotherapy in adult patients with operated pituitary adenomas. Pituitary 18(6):782–795CrossRefPubMedGoogle Scholar
  18. 18.
    van der Klaauw AA, Biermasz NR, Hoftijzer HC, Pereira AM, Romijn JA (2008) Previous radiotherapy negatively influences quality of life during 4 years of follow-up in patients cured from acromegaly. Clin Endocrinol 69(1):123–128CrossRefGoogle Scholar
  19. 19.
    Bex M, Abs R, T’Sjoen G et al (2007) AcroBel–the Belgian registry on acromegaly: a survey of the ‘real-life’ outcome in 418 acromegalic subjects. Eur J Endocrinol 157(4):399–409CrossRefPubMedGoogle Scholar
  20. 20.
    Colao A, Vandeva S, Pivonello R et al (2014) Could different treatment approaches in acromegaly influence life expectancy? A comparative study between Bulgaria and Campania (Italy). Eur J Endocrinol 171(2):263–273CrossRefPubMedGoogle Scholar
  21. 21.
    Mestron A, Webb SM, Astorga R et al (2004) Epidemiology, clinical characteristics, outcome, morbidity and mortality in acromegaly based on the Spanish acromegaly registry (Registro Espanol de Acromegalia, REA). Eur J Endocrinol 151(4):439–446CrossRefPubMedGoogle Scholar
  22. 22.
    Sherlock M, Reulen RC, Alonso AA et al (2009) ACTH deficiency, higher doses of hydrocortisone replacement, and radiotherapy are independent predictors of mortality in patients with acromegaly. J Clin Endocrinol Metab 94(11):4216–4223CrossRefPubMedGoogle Scholar
  23. 23.
    Ayuk J, Clayton RN, Holder G, Sheppard MC, Stewart PM, Bates AS (2004) Growth hormone and pituitary radiotherapy, but not serum insulin-like growth factor-I concentrations, predict excess mortality in patients with acromegaly. J Clin Endocrinol Metab 89(4):1613–1617CrossRefPubMedGoogle Scholar
  24. 24.
    Minniti G, Osti MF, Niyazi M (2016) Target delineation and optimal radiosurgical dose for pituitary tumors. Radiat Oncol 11(1):135CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Roberts BK, Ouyang DL, Lad SP et al (2007) Efficacy and safety of CyberKnife radiosurgery for acromegaly. Pituitary 10(1):19–25CrossRefPubMedGoogle Scholar
  26. 26.
    Iwata H, Sato K, Nomura R et al (2016) Long-term results of hypofractionated stereotactic radiotherapy with CyberKnife for growth hormone-secreting pituitary adenoma: evaluation by the Cortina consensus. J Neurooncol 128(2):267–275CrossRefPubMedGoogle Scholar
  27. 27.
    Gevaert T, Boussaer M, Engels B et al (2013) Evaluation of the clinical usefulness for using verification images during frameless radiosurgery. Radiother Oncol 108(1):114–117CrossRefPubMedGoogle Scholar
  28. 28.
    Liao HI, Wang CC, Wei KC et al (2014) Fractionated stereotactic radiosurgery using the Novalis system for the management of pituitary adenomas close to the optic apparatus. J Clin Neurosci 21(1):111–115CrossRefPubMedGoogle Scholar
  29. 29.
    Petrovich Z, Jozsef G, Yu C, Apuzzo ML (2003) Radiotherapy and stereotactic radiosurgery for pituitary tumors. Neurosurg Clin N Am 14(1):147–166CrossRefPubMedGoogle Scholar
  30. 30.
    Puataweepong P, Dhanachai M, Hansasuta A et al. The clinical outcome of hypofractionated stereotactic radiotherapy with CyberKnife robotic radiosurgery for perioptic pituitary adenoma. Technol Cancer Res Treat 2016;15(6):NP10–NP15CrossRefPubMedGoogle Scholar
  31. 31.
    Sesmilo G, Gaztambide S, Venegas E et al (2013) Changes in acromegaly treatment over four decades in Spain: analysis of the Spanish acromegaly registry (REA). Pituitary 16(1):115–121CrossRefPubMedGoogle Scholar
  32. 32.
    Karapanou O, Tzanela M, Christoforaki M et al (2016) Therapeutic trends and outcome of acromegaly: a single center experience over a 40-year period. Hormones 15(3):368–376PubMedGoogle Scholar
  33. 33.
    Zhang N, Pan L, Wang EM, Dai JZ, Wang BJ, Cai PW (2000) Radiosurgery for growth hormone-producing pituitary adenomas. J Neurosurg 93(Suppl 3):6–9PubMedGoogle Scholar
  34. 34.
    Wan H, Chihiro O, Yuan S (2009) MASEP gamma knife radiosurgery for secretory pituitary adenomas: experience in 347 consecutive cases. J Exp Clin Cancer Res 28:36CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Vik-Mo EO, Oksnes M, Pedersen PH et al (2007) Gamma knife stereotactic radiosurgery for acromegaly. Eur J Endocrinol 157(3):255–263CrossRefPubMedGoogle Scholar
  36. 36.
    Sicignano G, Losa M, Del VA et al (2012) Dosimetric factors associated with pituitary function after gamma knife surgery (GKS) of pituitary adenomas. Radiother Oncol 104(1):119–124CrossRefPubMedGoogle Scholar
  37. 37.
    Sheehan JP, Pouratian N, Steiner L, Laws ER, Vance ML (2011) Gamma Knife surgery for pituitary adenomas: factors related to radiological and endocrine outcomes. J Neurosurg 114(2):303–309CrossRefPubMedGoogle Scholar
  38. 38.
    Ronchi CL, Attanasio R, Verrua E et al (2009) Efficacy and tolerability of gamma knife radiosurgery in acromegaly: a 10-year follow-up study. Clin Endocrinol 71(6):846–852CrossRefGoogle Scholar
  39. 39.
    Poon TL, Leung SC, Poon CY, Yu CP (2010) Predictors of outcome following Gamma Knife surgery for acromegaly. J Neurosurg 113(Suppl):149–152PubMedGoogle Scholar
  40. 40.
    Pollock BE, Jacob JT, Brown PD, Nippoldt TB (2007) Radiosurgery of growth hormone-producing pituitary adenomas: factors associated with biochemical remission. J Neurosurg 106(5):833–838CrossRefPubMedGoogle Scholar
  41. 41.
    Losa M, Gioia L, Picozzi P et al (2008) The role of stereotactic radiotherapy in patients with growth hormone-secreting pituitary adenoma. J Clin Endocrinol Metab 93(7):2546–2552CrossRefPubMedGoogle Scholar
  42. 42.
    Liu X, Kano H, Kondziolka D et al (2012) Gamma knife radiosurgery for clinically persistent acromegaly. J Neurooncol 109(1):71–79CrossRefPubMedGoogle Scholar
  43. 43.
    Lee CC, Vance ML, Xu Z et al (2014) Stereotactic radiosurgery for acromegaly. J Clin Endocrinol Metab 99(4):1273–1281CrossRefPubMedGoogle Scholar
  44. 44.
    Kobayashi T, Mori Y, Uchiyama Y, Kida Y, Fujitani S (2005) Long-term results of gamma knife surgery for growth hormone-producing pituitary adenoma: is the disease difficult to cure? J Neurosurg 102:119–123CrossRefPubMedGoogle Scholar
  45. 45.
    Jezkova J, Marek J, Hana V et al (2006) Gamma knife radiosurgery for acromegaly-long-term experience. Clin Endocrinol 64(5):588–595.CrossRefGoogle Scholar
  46. 46.
    Jane JA Jr, Vance ML, Woodburn CJ, Laws ER Jr (2003) Stereotactic radiosurgery for hypersecreting pituitary tumors: part of a multimodality approach. Neurosurg Focus 14(5):e12CrossRefPubMedGoogle Scholar
  47. 47.
    Jagannathan J, Sheehan JP, Pouratian N, Laws ER Jr, Steiner L, Vance ML (2008) Gamma knife radiosurgery for acromegaly: outcomes after failed transsphenoidal surgery. Neurosurgery 62(6):1262–1269CrossRefPubMedGoogle Scholar
  48. 48.
    Izawa M, Hayashi M, Nakaya K et al (2000) Gamma knife radiosurgery for pituitary adenomas. J Neurosurg 93(Suppl 3):19–22PubMedGoogle Scholar
  49. 49.
    Iwai Y, Yamanaka K, Yoshimura M, Kawasaki I, Yamagami K, Yoshioka K (2010) Gamma knife radiosurgery for growth hormone-producing adenomas. J Clin Neurosci 17(3):299–304CrossRefPubMedGoogle Scholar
  50. 50.
    Hayashi M, Chernov M, Tamura N et al (2010) Gamma Knife robotic microradiosurgery of pituitary adenomas invading the cavernous sinus: treatment concept and results in 89 cases. J Neurooncol 98(2):185–194CrossRefPubMedGoogle Scholar
  51. 51.
    Gutt B, Wowra B, Alexandrov R et al (2005) Gamma-knife surgery is effective in normalising plasma insulin-like growth factor I in patients with acromegaly. Exp Clin Endocrinol Diabetes 113(4):219–224CrossRefPubMedGoogle Scholar
  52. 52.
    Grant RA, Whicker M, Lleva R, Knisely JP, Inzucchi SE, Chiang VL (2014) Efficacy and safety of higher dose stereotactic radiosurgery for functional pituitary adenomas: a preliminary report. World Neurosurg 82(1–2):195–201CrossRefPubMedGoogle Scholar
  53. 53.
    Franzin A, Spatola G, Losa M, Picozzi P, Mortini P (2012) Results of gamma knife radiosurgery in acromegaly. Int J Endocrinol 2012:342034CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Erdur FM, Kilic T, Peker S, Celik O, Kadioglu P (2011) Gammaknife radiosurgery in patients with acromegaly. J Clin Neurosci 18(12):1616–1620CrossRefPubMedGoogle Scholar
  55. 55.
    Cohen-Inbar O, Ramesh A, Xu Z, Vance ML, Schlesinger D, Sheehan JP (2016) Gamma knife radiosurgery in patients with persistent acromegaly or Cushing’s disease: long-term risk of hypopituitarism. Clin Endocrinol 84(4):524–531CrossRefGoogle Scholar
  56. 56.
    Castinetti F, Taieb D, Kuhn JM et al (2005) Outcome of gamma knife radiosurgery in 82 patients with acromegaly: correlation with initial hypersecretion. J Clin Endocrinol Metab 90(8):4483–4488CrossRefPubMedGoogle Scholar
  57. 57.
    Castinetti F, Nagai M, Morange I et al (2009) Long-term results of stereotactic radiosurgery in secretory pituitary adenomas. J Clin Endocrinol Metab 94(9):3400–3407CrossRefPubMedGoogle Scholar
  58. 58.
    Attanasio R, Epaminonda P, Motti E et al (2003) Gamma-knife radiosurgery in acromegaly: a 4-year follow-up study. J Clin Endocrinol Metab 88(7):3105–3112CrossRefPubMedGoogle Scholar
  59. 59.
    Yan JL, Chang CN, Chuang CC et al (2013) Long-term follow-up of patients with surgical intractable acromegaly after linear accelerator radiosurgery. J Formos Med Assoc 112(7):416–420CrossRefPubMedGoogle Scholar
  60. 60.
    Wilson PJ, De-Loyde KJ, Williams JR, Smee RI (2013) Acromegaly: a single centre’s experience of stereotactic radiosurgery and radiotherapy for growth hormone secreting pituitary tumours with the linear accelerator. J Clin Neurosci 20(11):1506–1513CrossRefPubMedGoogle Scholar
  61. 61.
    Voges J, Kocher M, Runge M et al (2006) Linear accelerator radiosurgery for pituitary macroadenomas: a 7-year follow-up study. Cancer 107(6):1355–1364CrossRefPubMedGoogle Scholar
  62. 62.
    Bostrom JP, Kinfe T, Meyer A et al (2015) Treatment of acromegaly patients with risk-adapted single or fractionated stereotactic high-precision radiotherapy: High local control and low toxicity in a pooled series. Strahlenther Onkol 191(6):477–485CrossRefPubMedGoogle Scholar
  63. 63.
    Cho CB, Park HK, Joo WI, Chough CK, Lee KJ, Rha HK (2009) Stereotactic Radiosurgery with the CyberKnife for Pituitary Adenomas. J Korean Neurosurg Soc 45(3):157–163CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Wattson DA, Tanguturi SK, Spiegel DY et al (2014) Outcomes of proton therapy for patients with functional pituitary adenomas. Int J Radiat Oncol Biol Phys 90(3):532–539CrossRefPubMedGoogle Scholar
  65. 65.
    Petit JH, Biller BM, Coen JJ et al (2007) Proton stereotactic radiosurgery in management of persistent acromegaly. Endocr Pract 13(7):726–734CrossRefPubMedGoogle Scholar
  66. 66.
    Abu Dabrh AM, Asi N, Farah WH et al (2015) Radiotherapy versus radiosurgery in treating patients with acromegaly: a systematic review and meta-analysis. Endocr Pract 21(8):943–956CrossRefPubMedGoogle Scholar
  67. 67.
    Lee CC, Vance ML, Lopes MB, Xu Z, Chen CJ, Sheehan J (2015) Stereotactic radiosurgery for acromegaly: outcomes by adenoma subtype. Pituitary 18(3):326–334CrossRefPubMedGoogle Scholar
  68. 68.
    Landolt AM, Haller D, Lomax N et al (2000) Octreotide may act as a radioprotective agent in acromegaly. J Clin Endocrinol Metab 85(3):1287–1289CrossRefPubMedGoogle Scholar
  69. 69.
    Losa M, Spatola G, Albano L et al. Frequency, pattern, and outcome of recurrences after gamma knife radiosurgery for pituitary adenomas. Endocrine 2016Google Scholar
  70. 70.
    Landolt AM, Lomax N, Scheib SG, Girard J (2006) Gamma Knife surgery after fractionated radiotherapy for acromegaly. J Neurosurg 105:31–36PubMedGoogle Scholar
  71. 71.
    Swords FM, Monson JP, Besser GM et al (2009) Gamma knife radiosurgery: a safe and effective salvage treatment for pituitary tumours not controlled despite conventional radiotherapy. Eur J Endocrinol 161(6):819–828CrossRefPubMedGoogle Scholar
  72. 72.
    Flickinger JC, Deutsch M, Lunsford LD (1989) Repeat megavoltage irradiation of pituitary and suprasellar tumors. Int J Radiat Oncol Biol Phys 17(1):171–175CrossRefPubMedGoogle Scholar
  73. 73.
    Xu Z, Lee VM, Schlesinger D, Sheehan JP (2013) Hypopituitarism after stereotactic radiosurgery for pituitary adenomas. Neurosurgery 72(4):630–637CrossRefPubMedGoogle Scholar
  74. 74.
    Taussky P, Kalra R, Coppens J, Mohebali J, Jensen R, Couldwell WT (2011) Endocrinological outcome after pituitary transposition (hypophysopexy) and adjuvant radiotherapy for tumors involving the cavernous sinus. J Neurosurg 115(1):55–62CrossRefPubMedGoogle Scholar
  75. 75.
    Mayo C, Martel MK, Marks LB, Flickinger J, Nam J, Kirkpatrick J (2010) Radiation dose-volume effects of optic nerves and chiasm. Int J Radiat Oncol Biol Phys 76(3 suppl):28–35CrossRefGoogle Scholar
  76. 76.
    Leavitt JA, Stafford SL, Link MJ, Pollock BE (2013) Long-term evaluation of radiation-induced optic neuropathy after single-fraction stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 87(3):524–527CrossRefPubMedGoogle Scholar
  77. 77.
    Ronchi CL, Verrua E, Ferrante E et al (2011) Long-term effects of radiotherapy on cardiovascular risk factors in acromegaly. Eur J Endocrinol 164(5):675–684CrossRefPubMedGoogle Scholar
  78. 78.
    Sattler MG, van Beek AP, Wolffenbuttel BH et al (2012) The incidence of second tumours and mortality in pituitary adenoma patients treated with postoperative radiotherapy versus surgery alone. Radiother Oncol 104(1):125–130CrossRefPubMedGoogle Scholar
  79. 79.
    Mercado M, Gonzalez B, Vargas G et al (2014) Successful mortality reduction and control of comorbidities in patients with acromegaly followed at a highly specialized multidisciplinary clinic. J Clin Endocrinol Metab 99(12):4438–4446CrossRefPubMedGoogle Scholar
  80. 80.
    Dal J, Feldt-Rasmussen U, Andersen M et al (2016) Acromegaly incidence, prevalence, complications and long-term prognosis: a nationwide cohort study. Eur J Endocrinol 175(3):181–190CrossRefPubMedGoogle Scholar
  81. 81.
    van Varsseveld NC, van Bunderen CC, Ubachs DH et al (2015) Cerebrovascular events, secondary intracranial tumors, and mortality after radiotherapy for nonfunctioning pituitary adenomas: a subanalysis from the Dutch national registry of growth hormone treatment in adults. J Clin Endocrinol Metab 100(3):1104–1112CrossRefPubMedGoogle Scholar
  82. 82.
    Hiniker SM, Modlin LA, Choi CY et al (2016) Dose-response modeling of the visual pathway tolerance to single-fraction and hypofractionated stereotactic radiosurgery. Semin Radiat Oncol 26(2):97–104CrossRefPubMedGoogle Scholar
  83. 83.
    Zhao K, Liu X, Liu D et al (2016) Fractionated Gamma Knife surgery for giant pituitary adenomas. Clin Neurol Neurosurg 150:139–142CrossRefPubMedGoogle Scholar
  84. 84.
    Colin P, Jovenin N, Delemer B et al (2005) Treatment of pituitary adenomas by fractionated stereotactic radiotherapy: a prospective study of 110 patients. Int J Radiat Oncol Biol Phys 62(2):333–341CrossRefPubMedGoogle Scholar
  85. 85.
    Diallo AM, Colin P, Litre CF et al (2015) Long-term results of fractionated stereotactic radiotherapy as third-line treatment in acromegaly. Endocrine 50(3):741–748CrossRefPubMedGoogle Scholar
  86. 86.
    Gheorghiu ML, Purice M, Poiana C, Coculescu M. Efficacy of pituitary radiotherapy on growth hormone (GH) secretion in patients with acromegaly. Abstract book for the American Association of Clinical Endocrinologists’ 21st Annual Meeting and Clinical Congress, May 23–27, Philadelphia, 2012, A152. 2012Google Scholar
  87. 87.
    Kim MY, Kim JH, Oh YK, Kim E (2016) Long-term outcomes of surgery and radiotherapy for secreting and non-secreting pituitary adenoma. Radiat Oncol J 34(2):121–127CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Milker-Zabel S, Zabel A, Huber P, Schlegel W, Wannenmacher M, Debus J (2004) Stereotactic conformal radiotherapy in patients with growth hormone-secreting pituitary adenoma. Int J Radiat Oncol Biol Phys 59(4):1088–1096CrossRefPubMedGoogle Scholar
  89. 89.
    Minniti G, Traish D, Ashley S, Gonsalves A, Brada M (2006) Fractionated stereotactic conformal radiotherapy for secreting and nonsecreting pituitary adenomas. Clin Endocrinol 64(5):542–548.CrossRefGoogle Scholar
  90. 90.
    Patt H, Jalali R, Yerawar C et al (2016) High-precision conformal fractionated radiotherapy is effective in achieving remission in patients with acromegaly after failed transphenoidal surgery. Endocr Pract 22(2):162–172CrossRefPubMedGoogle Scholar
  91. 91.
    Roug S, Rasmussen AK, Juhler M et al (2010) Fractionated stereotactic radiotherapy in patients with acromegaly: an interim single-centre audit. Eur J Endocrinol 162(4):685–694CrossRefPubMedGoogle Scholar
  92. 92.
    Shimon I, Jallad RS, Fleseriu M, Yedinak CG, Greenman Y, Bronstein MD (2015) Giant GH-secreting pituitary adenomas: management of rare and aggressive pituitary tumors. Eur J Endocrinol 172(6):707–713CrossRefPubMedGoogle Scholar
  93. 93.
    Landolt AM, Haller D, Lomax N et al (1998) Stereotactic radiosurgery for recurrent surgically treated acromegaly: comparison with fractionated radiotherapy. J Neurosurg 88(6):1002–1008CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.C.I. Parhon” National Institute of Endocrinology“Carol Davila” University of Medicine and PharmacyBucharestRomania

Personalised recommendations