Skip to main content

Advertisement

Log in

Intraoperative indocyanine green videoangiography for identification of pituitary adenomas using a microscopic transsphenoidal approach

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Purpose

Initial successful surgical treatment of pituitary adenomas is crucial to reach long-term remission. Indocyanine green (ICG) videoangiography (VA) is well established in vascular neurosurgery nowadays and several reports described ICG application in brain tumor surgery. We designed this study to evaluate the feasibility of intravenous application of ICG and visualisation of a pituitary lesion via the fluorescence mode of the operation microscope.

Methods

22 patients with pituitary adenomas were treated with transsphenoidal microsurgery and were included in this study. Intraoperatively 25 mg ICG was administered intravenously and visualized via the fluorescence mode of the operation microscope (Pentero/Zeiss).

Results

22 patients qualified for transsphenoidal surgery presenting with different clinical symptoms (13 patients with acromegaly, 6 with M. Cushing and 3 with other symptoms like vision disorder or dizziness) and identification of a pituitary lesion (21 of 22 patients) in preoperative MR-imaging (mean diameter: 9 mm; SD 3.6; 6 macroadenomas, 15 microadenomas, 1 MR-negative). In all 22 patients ICG VA was performed during surgery. No technical failures or adverse events after drug administration occurred. Visualization was optimal approximately 2.4 min after intravenous application. In all patients the adenoma could be detected via two different types of visualization: direct visualization by fluorophore emission versus indirect detection of the adenoma by a lower ICG fluorescence compared to the surrounding tissue.

Conclusion

Our data show that intraoperative ICG VA can be a useful and easily applicable additional diagnostic tool for visualization of pituitary lesions using the microscopic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hameed N, Yedinak CG, Brzana J, Gultekin SH, Coppa ND, Dogan A et al (2013) Remission rate after transsphenoidal surgery in patients with pathologically confirmed Cushing’s disease, the role of cortisol, ACTH assessment and immediate reoperation: a large single center experience. Pituitary 16(4):452–458

    Article  CAS  PubMed  Google Scholar 

  2. Pieters GF, Hermus AR, Meijer E, Smals AG, Kloppenborg PW (1989) Predictive factors for initial cure and relapse rate after pituitary surgery for Cushing’s disease. J Clin Endocrinol Metab 69(6):1122–1126

    Article  CAS  PubMed  Google Scholar 

  3. Arnaldi G, Angeli A, Atkinson AB, Bertagna X, Cavagnini F, Chrousos GP et al (2003) Diagnosis and complications of Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab 88(12):5593–5602

    Article  CAS  PubMed  Google Scholar 

  4. Rees DA, Hanna FW, Davies JS, Mills RG, Vafidis J, Scanlon MF (2002) Long-term follow-up results of transsphenoidal surgery for Cushing’s disease in a single centre using strict criteria for remission. Clin Endocrinol 56(4):541–551

    Article  CAS  Google Scholar 

  5. Hazer DB, Isik S, Berker D, Guler S, Gurlek A, Yucel T et al (2013) Treatment of acromegaly by endoscopic transsphenoidal surgery: surgical experience in 214 cases and cure rates according to current consensus criteria. J Neurosurg 119(6):1467–1477

    Article  PubMed  Google Scholar 

  6. Acebes JJ, Martino J, Masuet C, Montanya E, Soler J (2007) Early post-operative ACTH and cortisol as predictors of remission in Cushing’s disease. Acta Neurochir (Wien) 149(5):471–477 Discussion 7–9

    Article  CAS  Google Scholar 

  7. Tanei T, Nagatani T, Nakahara N, Watanabe T, Nishihata T, Nielsen ML et al (2013) Use of high-field intraoperative magnetic resonance imaging during endoscopic transsphenoidal surgery for functioning pituitary microadenomas and small adenomas located in the intrasellar region. Neurol Med Chir 53(7):501–510

    Article  Google Scholar 

  8. Woitzik J, Horn P, Vajkoczy P, Schmiedek P (2005) Intraoperative control of extracranial–intracranial bypass patency by near-infrared indocyanine green videoangiography. J Neurosurg 102(4):692–698

    Article  PubMed  Google Scholar 

  9. de Oliveira JG, Beck J, Seifert V, Teixeira MJ, Raabe A (2008) Assessment of flow in perforating arteries during intracranial aneurysm surgery using intraoperative near-infrared indocyanine green videoangiography. Neurosurgery 62(6 Suppl 3):1300–1310

    PubMed  Google Scholar 

  10. Imizu S, Kato Y, Sangli A, Oguri D, Sano H (2008) Assessment of incomplete clipping of aneurysms intraoperatively by a near-infrared indocyanine green-video angiography (Niicg-Va) integrated microscope. Minim Invasive Neurosurg 51(4):199–203

    Article  CAS  PubMed  Google Scholar 

  11. Hanggi D, Etminan N, Steiger HJ (2010) The impact of microscope-integrated intraoperative near-infrared indocyanine green videoangiography on surgery of arteriovenous malformations and dural arteriovenous fistulae. Neurosurgery 67(4):1094–1103 Discussion 103–104

    Article  PubMed  Google Scholar 

  12. Kim EH, Cho JM, Chang JH, Kim SH, Lee KS (2011) Application of intraoperative indocyanine green videoangiography to brain tumor surgery. Acta Neurochir (Wien) 153(7):1487–1495 Discussion 94-5

    Article  Google Scholar 

  13. Murai Y, Adachi K, Matano F, Tateyama K, Teramoto A (2011) Indocyanin green videoangiography study of hemangioblastomas. Can J Neurol Sci 38(1):41–47

    PubMed  Google Scholar 

  14. Ferroli P, Acerbi F, Albanese E, Tringali G, Broggi M, Franzini A et al (2011) Application of intraoperative indocyanine green angiography for CNS tumors: results on the first 100 cases. Acta Neurochir Suppl 109:251–257

    Article  CAS  PubMed  Google Scholar 

  15. Litvack ZN, Zada G, Laws ER Jr (2012) Indocyanine green fluorescence endoscopy for visual differentiation of pituitary tumor from surrounding structures. J Neurosurg 116(5):935–941

    Article  PubMed  Google Scholar 

  16. Jugenburg M, Kovacs K, Stefaneanu L, Scheithauer BW (1995) Vasculature in nontumorous hypophyses, pituitary adenomas, and carcinomas: a quantitative morphologic study. Endocr Pathol 6(2):115–124

    Article  PubMed  Google Scholar 

  17. Turner HE, Nagy Z, Gatter KC, Esiri MM, Harris AL, Wass JA (2000) Angiogenesis in pituitary adenomas and the normal pituitary gland. J Clin Endocrinol Metab 85(3):1159–1162

    Article  CAS  PubMed  Google Scholar 

  18. Yamada S, Takada K (2003) Angiogenesis in pituitary adenomas. Microsc Res Tech 60(2):236–243

    Article  CAS  PubMed  Google Scholar 

  19. Viacava P, Gasperi M, Acerbi G, Manetti L, Cecconi E, Bonadio AG et al (2003) Microvascular density and vascular endothelial growth factor expression in normal pituitary tissue and pituitary adenomas. J Endocrinol Invest 26(1):23–28

    Article  CAS  PubMed  Google Scholar 

  20. Niveiro M, Aranda FI, Peiro G, Alenda C, Pico A (2005) Immunohistochemical analysis of tumor angiogenic factors in human pituitary adenomas. Hum Pathol 36(10):1090–1095

    Article  CAS  PubMed  Google Scholar 

  21. Turner HE, Nagy Z, Gatter KC, Esiri MM, Harris AL, Wass JA (2000) Angiogenesis in pituitary adenomas—relationship to endocrine function, treatment and outcome. J Endocrinol 165(2):475–481

    Article  CAS  PubMed  Google Scholar 

  22. Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ (2000) Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 93(6):1003–1013

    Article  CAS  PubMed  Google Scholar 

  23. Nokes B, Apel M, Jones C, Brown G, Lang JE (2013) Aminolevulinic acid (ALA): photodynamic detection and potential therapeutic applications. J Surg Res 181(2):262–271

    Article  CAS  PubMed  Google Scholar 

  24. Paterno V, Fahlbusch R (2014) High-field iMRI in transsphenoidal pituitary adenoma surgery with special respect to typical localization of residual tumor. Acta Neurochir (Wien) 156(3):463–474 Discussion 74

    Article  Google Scholar 

  25. Sylvester PT, Evans JA, Zipfel GJ, Chole RA, Uppaluri R, Haughey BH et al (2014) Combined high-field intraoperative magnetic resonance imaging and endoscopy increase extent of resection and progression-free survival for pituitary adenomas. Pituitary. doi:10.1007/s11102-014-0560-2.

  26. Buchfelder M, Schlaffer SM (2012) Intraoperative magnetic resonance imaging during surgery for pituitary adenomas: pros and cons. Endocrine 42(3):483–495

    Article  CAS  PubMed  Google Scholar 

  27. Hofmann BM, Hlavac M, Martinez R, Buchfelder M, Muller OA, Fahlbusch R (2008) Long-term results after microsurgery for Cushing disease: experience with 426 primary operations over 35 years. J Neurosurg 108(1):9–18

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mr. Manfred Eifler-Sander for clinical patient management and documentation.

Conflict of interest

All of the authors are aware of and agree to the content of the manuscript and their being listed as an author on the manuscript. None of the authors has any financial interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Vajkoczy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandow, N., Klene, W., Elbelt, U. et al. Intraoperative indocyanine green videoangiography for identification of pituitary adenomas using a microscopic transsphenoidal approach. Pituitary 18, 613–620 (2015). https://doi.org/10.1007/s11102-014-0620-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-014-0620-7

Keywords

Navigation