Skip to main content

Advertisement

Log in

Combined high-field intraoperative magnetic resonance imaging and endoscopy increase extent of resection and progression-free survival for pituitary adenomas

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Purpose

The clinical benefit of combined intraoperative magnetic resonance imaging (iMRI) and endoscopy for transsphenoidal pituitary adenoma resection has not been completely characterized. This study assessed the impact of microscopy, endoscopy, and/or iMRI on progression-free survival, extent of resection status (gross-, near-, and sub-total resection), and operative complications.

Methods

Retrospective analyses were performed on 446 transsphenoidal pituitary adenoma surgeries at a single institution between 1998 and 2012. Multivariate analyses were used to control for baseline characteristics, differences during extent of resection status, and progression-free survival analysis.

Results

Additional surgery was performed after iMRI in 56/156 cases (35.9 %), which led to increased extent of resection status in 15/156 cases (9.6 %). Multivariate ordinal logistic regression revealed no increase in extent of resection status following iMRI or endoscopy alone; however, combining these modalities increased extent of resection status (odds ratio 2.05, 95 % CI 1.21–3.46) compared to conventional transsphenoidal microsurgery. Multivariate Cox regression revealed that reduced extent of resection status shortened progression-free survival for near- versus gross-total resection [hazard ratio (HR) 2.87, 95 % CI 1.24–6.65] and sub- versus near-total resection (HR 2.10; 95 % CI 1.00–4.40). Complication comparisons between microscopy, endoscopy, and iMRI revealed increased perioperative deaths for endoscopy versus microscopy (4/209 and 0/237, respectively), but this difference was non-significant considering multiple post hoc comparisons (Fisher exact, p = 0.24).

Conclusions

Combined use of endoscopy and iMRI increased pituitary adenoma extent of resection status compared to conventional transsphenoidal microsurgery, and increased extent of resection status was associated with longer progression-free survival. Treatment modality combination did not significantly impact complication rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chang EF, Zada G, Kim S et al (2008) Long-term recurrence and mortality after surgery and adjuvant radiotherapy for nonfunctional pituitary adenomas. J Neurosurg 108:736–745

    Article  PubMed  Google Scholar 

  2. Goudakos JK, Markou KD, Georgalas C (2011) Endoscopic versus microscopic trans-sphenoidal pituitary surgery: a systematic review and meta-analysis. Clin Otolaryngol 36:212–220

    Article  CAS  PubMed  Google Scholar 

  3. Tabaee A, Anand VK, Barrón Y et al (2009) Endoscopic pituitary surgery: a systematic review and meta-analysis. J Neurosurg 111:545–554

    Article  PubMed  Google Scholar 

  4. Cho D-Y, Liau W-R (2002) Comparison of endonasal endoscopic surgery and sublabial microsurgery for prolactinomas. Surg Neurol 58:371–375

    Article  PubMed  Google Scholar 

  5. Chole RA, Lim C, Dunham B et al (2011) A novel transnasal transsphenoidal speculum: a design for both microscopic and endoscopic transsphenoidal pituitary surgery. J Neurosurg 114:1380–1385

    PubMed  Google Scholar 

  6. D’Haens J, Van Rompaey K, Stadnik T et al (2009) Fully endoscopic transsphenoidal surgery for functioning pituitary adenomas: a retrospective comparison with traditional transsphenoidal microsurgery in the same institution. Surg Neurol 72:336–340

    Article  PubMed  Google Scholar 

  7. McLaughlin N, Eisenberg AA, Cohan P et al (2013) Value of endoscopy for maximizing tumor removal in endonasal transsphenoidal pituitary adenoma surgery. J Neurosurg 118:613–620

    Article  PubMed  Google Scholar 

  8. Messerer M, De Battista JC, Raverot G et al (2011) Evidence of improved surgical outcome following endoscopy for nonfunctioning pituitary adenoma removal. Neurosurg Focus 30:E11

    Article  PubMed  Google Scholar 

  9. Ammirati M, Wei L, Ciric I (2013) Short-term outcome of endoscopic versus microscopic pituitary adenoma surgery: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 84:843–849

    Article  PubMed Central  PubMed  Google Scholar 

  10. Starke RM, Raper DMS, Payne SC et al (2013) Endoscopic versus microsurgical transsphenoidal surgery for acromegaly: outcomes in a concurrent series of patients using modern criteria for remission. J Clin Endocrinol Metab 98:1–10

    Article  Google Scholar 

  11. Anand VK, Schwartz TH, Hiltzik DH, Kacker A (2006) Endoscopic transsphenoidal pituitary surgery with real-time intraoperative magnetic resonance imaging. Am J Rhinol 20:401–405

    Article  PubMed  Google Scholar 

  12. Berkmann S, Fandino J, Zosso S et al (2011) Intraoperative magnetic resonance imaging and early prognosis for vision after transsphenoidal surgery for sellar lesions. J Neurosurg 115:518–527

    Article  PubMed  Google Scholar 

  13. Fahlbusch R, Ganslandt O, Buchfelder M et al (2001) Intraoperative magnetic resonance imaging during transsphenoidal surgery. J Neurosurg 95:381–390

    Article  CAS  PubMed  Google Scholar 

  14. Gerlach R, du Mesnil de Rochemont R, Gasser T et al (2008) Feasibility of Polestar N20, an ultra-low-field intraoperative magnetic resonance imaging system in resection control of pituitary macroadenomas: lessons learned from the first 40 cases. Neurosurgery 63:272–275

    Article  PubMed  Google Scholar 

  15. Schwartz TH, Stieg PE, Anand VK (2006) Endoscopic transsphenoidal pituitary surgery with intraoperative magnetic resonance imaging. Neurosurgery 58:44–51

    Article  Google Scholar 

  16. Vitaz TW, Inkabi KE, Carrubba CJ (2011) Intraoperative MRI for transsphenoidal procedures: short-term outcome for 100 consecutive cases. Clin Neurol Neurosurg 113:731–735

    Article  PubMed  Google Scholar 

  17. Wu JS, Shou XF, Yao CJ et al (2009) Transsphenoidal pituitary macroadenomas resection guided by PoleStar N20 low-field intraoperative magnetic resonance imaging: comparison with early postoperative high-field magnetic resonance imaging. Neurosurgery 65:61–63

    Google Scholar 

  18. Fahlbusch R, Keller B, Ganslandt O et al (2005) Transsphenoidal surgery in acromegaly investigated by intraoperative high-field magnetic resonance imaging. Eur J Endocrinol 153:239–248

    Article  CAS  PubMed  Google Scholar 

  19. Netuka D, Masopust V, Belsan T et al (2011) One year experience with 3.0 T intraoperative MRI in pituitary surgery. Acta Neurochir Suppl 109:3–5

    Article  Google Scholar 

  20. Nimsky C, Ganslandt O, Fahlbusch R (2005) Comparing 0.2 tesla with 1.5 tesla intraoperative magnetic resonance imaging analysis of setup, workflow, and efficiency. Acad Radiol 12:1065–1079

    Article  PubMed  Google Scholar 

  21. Nimsky C, Ganslandt O, Von Keller B et al (2004) Intraoperative high-field-strength MR imaging: implementation and experience in 200 patients. Radiology 233:67–78

    Article  PubMed  Google Scholar 

  22. Nimsky C, Keller B, Ganslandt O et al (2006) Intraoperative high-field magnetic resonance imaging in transsphenoidal surgery of hormonally inactive pituitary macroadenomas. Neurosurgery 58:105–114

    Article  Google Scholar 

  23. Pamir MN, Peker S, Ozek MM, Dincer A (2006) Intraoperative MR imaging: preliminary results with 3 tesla MR system. Acta Neurochir Suppl 98:97–100

    Article  CAS  PubMed  Google Scholar 

  24. Szerlip NJ, Zhang Y-CC, Placantonakis DG et al (2011) Transsphenoidal resection of sellar tumors using high-field intraoperative magnetic resonance imaging. Skull Base 21:223–232

    Article  PubMed Central  PubMed  Google Scholar 

  25. Coburger J, Konig R, Seitz K, et al (2014) Determining the utility of intraoperative magnetic resonance imaging for transsphenoidal surgery: a retrospective study. J Neurosurg 120:346–356

    Google Scholar 

  26. Chicoine MR, Lim CC, Evans JA et al (2011) Implementation and preliminary clinical experience with the use of ceiling mounted mobile high field intraoperative magnetic resonance imaging between two operating rooms. Acta Neurochir Suppl 109:97–102

    Article  PubMed  Google Scholar 

  27. Hall WA, Kowalik K, Liu H et al (2003) Costs and benefits of intraoperative MR-guided brain tumor resection. Acta Neurochir Suppl 85:137–142

    Article  CAS  PubMed  Google Scholar 

  28. Theodosopoulos PV, Leach J, Kerr RG et al (2010) Maximizing the extent of tumor resection during transsphenoidal surgery for pituitary macroadenomas: can endoscopy replace intraoperative magnetic resonance imaging? J Neurosurg 112:736–743

    Article  PubMed  Google Scholar 

  29. Chicoine RM, Evans AJ, Wippold JF et al (2011) Comparison of intraoperative and postoperative MRI for endoscopic transsphenoidal resection of pituitary macroadenomas. Skull Base 21:A064

    Article  Google Scholar 

  30. Haydon DH, Chicoine MR, Dacey RG (2013) The impact of high-field-strength intraoperative magnetic resonance imaging on brain tumor management. Neurosurgery 60:92–97

    Article  PubMed  Google Scholar 

  31. Leuthardt EC, Lim CCH, Shah MN et al (2011) Use of movable high-field-strength intraoperative magnetic resonance imaging with awake craniotomies for resection of gliomas: preliminary experience. Neurosurgery 69:194–205

    Article  PubMed  Google Scholar 

  32. Shah MN, Leonard JR, Inder G et al (2012) Intraoperative magnetic resonance imaging to reduce the rate of early reoperation for lesion resection in pediatric neurosurgery. J Neurosurg Pediatr 9:259–264

    Article  PubMed  Google Scholar 

  33. De Paiva Neto MA, Vandergrift A, Fatemi N et al (2010) Endonasal transsphenoidal surgery and multimodality treatment for giant pituitary adenomas. Clin Endocrinol 72:512–519

    Article  Google Scholar 

  34. Di Maio S, Cavallo LM, Esposito F et al (2011) Extended endoscopic endonasal approach for selected pituitary adenomas: early experience. J Neurosurg 114:345–353

    Article  PubMed  Google Scholar 

  35. Arnaldi G, Angeli A, Atkinson A et al (2003) Diagnosis and complications of Cushing’s Syndrome: a consensus statement. J Clin Endocrinol Metab 88:5593–5602

    Article  CAS  PubMed  Google Scholar 

  36. Casanueva FF, Molitch ME, Schlechte JA et al (2006) Guidelines of the Pituitary Society for the diagnosis and management of prolactinomas. Clin Endocrinol 65:265–273

    Article  Google Scholar 

  37. Giustina A, Chanson P, Bronstein MD et al (2010) A consensus on criteria for cure of acromegaly. J Clin Endocrinol Metab 95:3141–3148

    Article  CAS  PubMed  Google Scholar 

  38. Ekramullah SM, Saitoh Y, Arita N et al (1996) The correlation of Ki-67 staining indices with tumour doubling times in regrowing non-functioning pituitary adenomas. Acta Neurochir 138:1449–1455

    Article  CAS  PubMed  Google Scholar 

  39. Green VL, Atkin SL, Speirs V et al (1996) Cytokine expression in human anterior pituitary adenomas. Clin Endocrinol 45:179–185

    Article  CAS  Google Scholar 

  40. Tanaka Y, Hongo K, Tada T et al (2003) Growth pattern and rate in residual nonfunctioning pituitary adenomas: correlations among tumor volume doubling time, patient age, and MIB-1 index. J Neurosurg 98:359–365

    Article  PubMed  Google Scholar 

  41. Buchfelder M, Schlaffer S-M (2012) Intraoperative magnetic resonance imaging during surgery for pituitary adenomas: pros and cons. Endocrine 42:483–495

    Article  CAS  PubMed  Google Scholar 

  42. Lang MJ, Kelly JJ, Sutherland GR (2011) A moveable 3-Tesla intraoperative magnetic resonance imaging system. Neurosurgery 68:168–179

    Article  PubMed  Google Scholar 

  43. Koutourousiou M, Gardner PA, Fernandez-Miranda JC et al (2013) Endoscopic endonasal surgery for giant pituitary adenomas: advantages and limitations. J Neurosurg 118:621–631

    Article  PubMed  Google Scholar 

  44. Losa M, Mortini P, Barzaghi R et al (2008) Early results of surgery in patients with nonfunctioning pituitary adenoma and analysis of the risk of tumor recurrence. J Neurosurg 108:525–532

    Article  PubMed  Google Scholar 

  45. Berker M, Hazer DB, Yücel T et al (2012) Complications of endoscopic surgery of the pituitary adenomas: analysis of 570 patients and review of the literature. Pituitary 15:288–300

    Article  PubMed  Google Scholar 

  46. Mortini P, Losa M, Barzaghi R et al (2005) Results of transsphenoidal surgery in a large series of patients with pituitary adenoma. Neurosurgery 56:1222–1233

    Article  PubMed  Google Scholar 

  47. Frank G, Pasquini E, Farneti G et al (2006) The endoscopic versus the traditional approach in pituitary surgery. Neuroendocrinology 83:240–248

    Article  CAS  PubMed  Google Scholar 

  48. Kabil MS, Eby JB, Shahinian HK (2005) Fully endoscopic endonasal vs. transseptal transsphenoidal pituitary surgery. Minim Invasive Neurosurg 48:348–354

    Article  CAS  PubMed  Google Scholar 

  49. Halvorsen H, Ramm-Pettersen J, Josefsen R, et al. (2013) Surgical complications after transsphenoidal microscopic and endoscopic surgery for pituitary adenoma: a consecutive series of 506 procedures. Acta Neurochir (Wien) Epub before print

  50. Jane JJ, Laws E (2001) The surgical management of pituitary adenomas in a series of 3,093 patients. J Am Coll Surg 193:651–659

    Article  PubMed  Google Scholar 

  51. DeKlotz TR, Chia SH, Lu W et al (2012) Meta-analysis of endoscopic versus sublabial pituitary surgery. Laryngoscope 122:511–518

    Article  PubMed  Google Scholar 

  52. Ciric I, Ragin A, Baumgartner C, Pierce D (1997) Complications of transsphenoidal surgery: results of a national survey, review of the literature, and personal experience. Neurosurgery 40:225–236

    Article  CAS  PubMed  Google Scholar 

  53. Senft C, Bink A, Franz K et al (2011) Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol 12:997–1003

    Article  PubMed  Google Scholar 

  54. Stummer W (2008) Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery 62:564–576

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Feng Gao, PhD and J. Phillip Miller, PhD from the Department of Biostatistics at Washington University in St. Louis for his advice regarding the statistical methods performed in this study. Furthermore, we would like to thank Bridget McCullough & Stan Goddard our MRI technologists, and Kathy Draege our neurosurgical operating room charge nurse and our entire operating room staff. These individuals enable the safe completion of these surgical procedures in the complex iMRI environment

Conflict of interest

Michael Chicoine and John Evans received funding from IMRIS Inc. for an unrestricted educational grant that has helped support the iMRI database and outcomes analysis. The authors have no personal financial or institutional interest in any of the drugs, materials, or devices described in this article. Peter Sylvester received grant support from the Clinical and Translational Science Award (CTSA) program of the National Center for Advancing Translational Sciences (NCATS) of the National Institutes of Health (NIH) under Award Numbers UL1 TR000448 and TL1 TR000449.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Chicoine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sylvester, P.T., Evans, J.A., Zipfel, G.J. et al. Combined high-field intraoperative magnetic resonance imaging and endoscopy increase extent of resection and progression-free survival for pituitary adenomas. Pituitary 18, 72–85 (2015). https://doi.org/10.1007/s11102-014-0560-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-014-0560-2

Keywords

Navigation