Skip to main content
Log in

Expression of the long non-coding RNAs MEG3, HOTAIR, and MALAT-1 in non-functioning pituitary adenomas and their relationship to tumor behavior

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Purpose

It is becoming evident that long non-coding RNAs (lncRNAs) participate in diverse biological processes via distinct mechanisms. Many lncRNAs have altered expression and likely to have functional roles in tumorigenesis. Although loss of maternally-expressed gene 3 (MEG3) expression has been detected in non-functioning pituitary adenomas (NFPAs), there are no published reports regarding the association between MEG3 expression and the invasive ability of NFPAs. Moreover, the roles of Hox transcript antisense intergenic RNA (HOTAIR) and metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1) in NFPAs have not been examined. To investigate the role of MEG3, HOTAIR, and MALAT-1 in NFPA development and invasion.

Methods

MEG3, HOTAIR, MALAT-1 and proliferating cell nuclear antigen (PCNA) were detected in 52 NFPA samples and seven normal human anterior pituitaries using real-time quantitative reverse transcription polymerase chain reaction.

Results

MEG3 lncRNA levels gradually decreased whereas HOTAIR lncRNA levels gradually increased from normal anterior pituitaries to non-invasive NFPAs to invasive NFPAs. There was a significant association between MEG3 (P < 0.01) and HOTAIR (P < 0.05) expression and the biological behavior of the tumor. Furthermore, PCNA mRNA levels markedly increased in invasive NFPAs compared to non-invasive ones (P < 0.01). In addition, PCNA mRNA negatively correlated with MEG3 lncRNA levels (P < 0.05).

Conclusions

MEG3 and HOTAIR expression may correlate with NFPA development and invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Daly AF, Rixhon M, Adam C, Dempegioti A, Tichomirowa MA, Beckers A (2006) High prevalence of pituitary adenomas: a cross-sectional study in the province of Liege, Belgium. J Clin Endocrinol Metab 91(12):4769–4775. doi:10.1210/jc.2006-1668

    Article  CAS  PubMed  Google Scholar 

  2. Fernandez A, Karavitaki N, Wass JA (2010) Prevalence of pituitary adenomas: a community-based, cross-sectional study in Banbury (Oxfordshire, UK). Clin Endocrinol (Oxf) 72(3):377–382. doi:10.1111/j.1365-2265.2009.03667.x

    Article  Google Scholar 

  3. Katznelson L, Alexander JM, Klibanski A (1993) Clinical review 45: clinically nonfunctioning pituitary adenomas. J Clin Endocrinol Metab 76(5):1089–1094. doi:10.1210/jc.76.5.1089

    CAS  PubMed  Google Scholar 

  4. Melmed S (2011) Pathogenesis of pituitary tumors. Nat Rev Endocrinol 7(5):257–266. doi:10.1038/nrendo.2011.40

    Article  CAS  PubMed  Google Scholar 

  5. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, Cabili MN, Jaenisch R, Mikkelsen TS, Jacks T, Hacohen N, Bernstein BE, Kellis M, Regev A, Rinn JL, Lander ES (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458(7235):223–227. doi:10.1038/nature07672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136(4):629–641. doi:10.1016/j.cell.2009.02.006

    Article  CAS  PubMed  Google Scholar 

  7. Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21(6):354–361. doi:10.1016/j.tcb.2011.04.001

    Article  CAS  PubMed  Google Scholar 

  8. Ji P, Diederichs S, Wang W, Boing S, Metzger R, Schneider PM, Tidow N, Brandt B, Buerger H, Bulk E, Thomas M, Berdel WE, Serve H, Muller-Tidow C (2003) MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22(39):8031–8041. doi:10.1038/sj.onc.1206928

    Article  PubMed  Google Scholar 

  9. Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE (2010) Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 6(12):e1001233. doi:10.1371/journal.pgen.1001233

    Article  PubMed Central  PubMed  Google Scholar 

  10. Miyoshi N, Wagatsuma H, Wakana S, Shiroishi T, Nomura M, Aisaka K, Kohda T, Surani MA, Kaneko-Ishino T, Ishino F (2000) Identification of an imprinted gene, Meg3/Gtl2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes Cells 5(3):211–220

    Article  CAS  PubMed  Google Scholar 

  11. Zhou Y, Zhang X, Klibanski A (2012) MEG3 noncoding RNA: a tumor suppressor. J Mol Endocrinol 48(3):R45–R53. doi:10.1530/jme-12-0008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Zhang X, Zhou Y, Mehta KR, Danila DC, Scolavino S, Johnson SR, Klibanski A (2003) A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab 88(11):5119–5126

    Article  CAS  PubMed  Google Scholar 

  13. Bando T, Kato Y, Ihara Y, Yamagishi F, Tsukada K, Isobe M (1999) Loss of heterozygosity of 14q32 in colorectal carcinoma. Cancer Genet Cytogenet 111(2):161–165

    Article  CAS  PubMed  Google Scholar 

  14. Lu KH, Li W, Liu XH, Sun M, Zhang ML, Wu WQ, Xie WP, Hou YY (2013) Long non-coding RNA MEG3 inhibits NSCLC cells proliferation and induces apoptosis by affecting p53 expression. BMC Cancer 13(1):461. doi:10.1186/1471-2407-13-461

    Article  PubMed Central  PubMed  Google Scholar 

  15. Braconi C, Kogure T, Valeri N, Huang N, Nuovo G, Costinean S, Negrini M, Miotto E, Croce CM, Patel T (2011) microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene 30(47):4750–4756. doi:10.1038/onc.2011.193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Wang P, Ren Z, Sun P (2012) Overexpression of the long non-coding RNA MEG3 impairs in vitro glioma cell proliferation. J Cell Biochem 113(6):1868–1874. doi:10.1002/jcb.24055

    Article  CAS  PubMed  Google Scholar 

  17. Zhang X, Gejman R, Mahta A, Zhong Y, Rice KA, Zhou Y, Cheunsuchon P, Louis DN, Klibanski A (2010) Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res 70(6):2350–2358. doi:10.1158/0008-5472.can-09-3885

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Wilson CB (1984) A decade of pituitary microsurgery The Herbert Olivecrona lecture. J Neurosurg 61(5):814–833. doi:10.3171/jns.1984.61.5.0814

    Article  CAS  PubMed  Google Scholar 

  19. Knosp E, Steiner E, Kitz K, Matula C (1993) Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery 33(4):610–617 discussion 617-618

    Article  CAS  PubMed  Google Scholar 

  20. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108

    Article  CAS  PubMed  Google Scholar 

  21. Cheunsuchon P, Zhou Y, Zhang X, Lee H, Chen W, Nakayama Y, Rice KA, Tessa Hedley-Whyte E, Swearingen B, Klibanski A (2011) Silencing of the imprinted DLK1-MEG3 locus in human clinically nonfunctioning pituitary adenomas. Am J Pathol 179(4):2120–2130. doi:10.1016/j.ajpath.2011.07.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Gejman R, Batista DL, Zhong Y, Zhou Y, Zhang X, Swearingen B, Stratakis CA, Hedley-Whyte ET, Klibanski A (2008) Selective loss of MEG3 expression and intergenic differentially methylated region hypermethylation in the MEG3/DLK1 locus in human clinically nonfunctioning pituitary adenomas. J Clin Endocrinol Metab 93(10):4119–4125. doi:10.1210/jc.2007-2633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Bravo R, Frank R, Blundell PA, Macdonald-Bravo H (1987) Cyclin/PCNA is the auxiliary protein of DNA polymerase-delta. Nature 326(6112):515–517. doi:10.1038/326515a0

    Article  CAS  PubMed  Google Scholar 

  24. Zhao J, Dahle D, Zhou Y, Zhang X, Klibanski A (2005) Hypermethylation of the promoter region is associated with the loss of MEG3 gene expression in human pituitary tumors. J Clin Endocrinol Metab 90(4):2179–2186. doi:10.1210/jc.2004-1848

    Article  CAS  PubMed  Google Scholar 

  25. Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL, Gejman R, Ansell PJ, Zhao J, Weng C, Klibanski A (2007) Activation of p53 by MEG3 non-coding RNA. J Biol Chem 282(34):24731–24742. doi:10.1074/jbc.M702029200

    Article  CAS  PubMed  Google Scholar 

  26. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323. doi:10.1016/j.cell.2007.05.022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076. doi:10.1038/nature08975

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kim K, Jutooru I, Chadalapaka G, Johnson G, Frank J, Burghardt R, Kim S, Safe S (2013) HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene 32(13):1616–1625. doi:10.1038/onc.2012.193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Nakagawa T, Endo H, Yokoyama M, Abe J, Tamai K, Tanaka N, Sato I, Takahashi S, Kondo T, Satoh K (2013) Large noncoding RNA HOTAIR enhances aggressive biological behavior and is associated with short disease-free survival in human non-small cell lung cancer. Biochem Biophys Res Commun 436(2):319–324. doi:10.1016/j.bbrc.2013.05.101

    Article  CAS  PubMed  Google Scholar 

  30. Lin R, Maeda S, Liu C, Karin M, Edgington TS (2007) A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas. Oncogene 26(6):851–858. doi:10.1038/sj.onc.1209846

    Article  CAS  PubMed  Google Scholar 

  31. Guffanti A, Iacono M, Pelucchi P, Kim N, Solda G, Croft LJ, Taft RJ, Rizzi E, Askarian-Amiri M, Bonnal RJ, Callari M, Mignone F, Pesole G, Bertalot G, Bernardi LR, Albertini A, Lee C, Mattick JS, Zucchi I, De Bellis G (2009) A transcriptional sketch of a primary human breast cancer by 454 deep sequencing. BMC Genomics 10:163. doi:10.1186/1471-2164-10-163

    Article  PubMed Central  PubMed  Google Scholar 

  32. Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA, Blencowe BJ, Prasanth SG, Prasanth KV (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39(6):925–938. doi:10.1016/j.molcel.2010.08.011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31000498).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yazhuo Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Li, C., Liu, C. et al. Expression of the long non-coding RNAs MEG3, HOTAIR, and MALAT-1 in non-functioning pituitary adenomas and their relationship to tumor behavior. Pituitary 18, 42–47 (2015). https://doi.org/10.1007/s11102-014-0554-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-014-0554-0

Keywords

Navigation