Skip to main content
Log in

Encouraging efficacy of modern conformal fractionated radiotherapy in patients with uncured Cushing’s disease

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

The objective of this study was to assess the efficacy of modern conformal fractionated radiotherapy (RT) in patients with uncured Cushing’s disease (CD) after failed transsphenoidal surgery (TSS). In this retrospective analysis, we reviewed records of patients with CD who received modern conformal fractionated RT between 2001 and 2010. Records were evaluated for frequency and interval of remission post RT. The change in the tumour size, endocrine insufficiencies and complications developing post RT were noted. Remission was defined as 2 mg Low dose dexamethasone suppressed cortisol of <50 nmol/l. During the study period of 10 years, a total of 24 patients (mean age: 27.9, range: 21–48 years) underwent pituitary RT for CD. Out of these, long term follow up was available for 22 patients and 20 patients (15F/5M, 12 microadenomas/8 macroadenomas) were included for final analysis. All the patients received modern conformal fractionated external beam RT (45 Gy in 25 fractions) with the median follow up of 37.5 months (range 12–144). Fifteen patients (10 microadenomas/5 macroadenomas) underwent remission after a median follow up period of 20 months. None of the patients had recurrence. Post RT, new onset endocrine deficiencies were seen in 8 (40 %) patients. Modern conformal fractionated external beam radiotherapy is an effective modality for treatment of adult patients with CD after failed TSS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Biller BM, Grossman AB, Stewart PM et al (2008) Treatment of adrenocorticotropin-dependent Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab 93:2454–2462

    Article  CAS  PubMed  Google Scholar 

  2. Hammer GD, Tyrrell GB, Lamborn KR et al (2004) Transsphenoidal microsurgery for Cushing’s disease: initial outcome and long-term results. J Clin Endocrinol Metab 89:6348–6357

    Article  CAS  PubMed  Google Scholar 

  3. Bochicchio D, Losa M, Buchfelder M (1995) Factors influencing the immediate and late outcome of Cushing’s disease treated by transsphenoidal surgery: a retrospective study by the European Cushing’s Disease Survey Group. J Clin Endocrinol Metab 80:3114–3120

    CAS  PubMed  Google Scholar 

  4. Estrada J, Boronat M, Mielgo M et al (1997) The long term outcome of pituitary irradiation after unsuccessful transsphenoidal surgery in Cushing’s disease. N Engl J Med 336(3):172–177

    Article  CAS  PubMed  Google Scholar 

  5. Knappe UJ, Lüdecke DK (1996) Persistent and recurrent hypercortisolism after transsphenoidal surgery for Cushing’s disease. Acta Neurochir Suppl 65:31–34

    CAS  PubMed  Google Scholar 

  6. Jagannathan J, Smith R, DeVroom HL et al (2009) Outcome of using the histological pseudocapsule as a surgical capsule in Cushing disease. J Neurosurg 111:531–539

    Article  PubMed Central  PubMed  Google Scholar 

  7. Chen JC, Amar AP, Choi S et al (2003) Transsphenoidal microsurgical treatment of Cushing disease: postoperative assessment of surgical efficacy by application of an overnight low-dose dexamethasone suppression test. J Neurosurg 98(5):967–973

    Article  PubMed  Google Scholar 

  8. Patil CG, Prevedello DM, Lad SP et al (2008) Late recurrences of Cushing’s disease after initial successful transsphenoidal surgery. J Clin Endocrinol Metab 93:358–362

    Article  CAS  PubMed  Google Scholar 

  9. Sonino N, Zielezny M, Fava GA et al (1996) Risk factors and long-term outcome in pituitary dependent Cushing’s disease. J Clin Endocrinol Metab 81:2647–2652

    CAS  PubMed  Google Scholar 

  10. Ram Z, Neiman LK, Cutler GB Jr et al (1994) Early repeat surgery for persistent Cushing’s disease. J Neurosurg 80:37–45

    Article  CAS  PubMed  Google Scholar 

  11. Patil CG, Veeravagu A, Prevedello DM, Katznelson L, Vance ML, Laws ER Jr (2008) Outcomes after repeat transsphenoidal surgery for recurrent Cushing’s disease. Neurosurgery 63(2):266–270

    Article  PubMed  Google Scholar 

  12. ICRU Report 50. Prescribing, recording and reporting photon beam therapy. International commission on radiation units and measurements; 1993

  13. Jalali R, Budrukkar A, Sarin R, Sharma DS (2005) High precision conformal radiotherapy employing conservative margins in childhood benign and low-grade brain tumours. Radiother Oncol 74(1):37–44

    Google Scholar 

  14. Minniti G, Osti M, Jaffrain-Rea ML et al (2007) Long-term follow-up results of postoperative radiation therapy for Cushing’s disease. J Neurooncol 84:79–84

    Article  PubMed  Google Scholar 

  15. Tsang RW, Brierley JD, Panzarella T et al (1996) Role of radiation therapy in clinical hormonally-active pituitary adenomas. Radiother Oncol 41:45–53

    Article  CAS  PubMed  Google Scholar 

  16. Murayama M, Yasuda K, Minamori Y et al (1992) Long term follow-up of Cushing’s disease treated with reserpine and pituitary irradiation. J Clin Endocrinol Metab 75:935–942

    CAS  PubMed  Google Scholar 

  17. Littley MD, Shalet SM, Beardwell CG et al (1990) Long-term follow-up of low-dose external pituitary irradiation for Cushing’s disease. Clin Endocrinol (Oxf.) 33:445–455

    Article  CAS  Google Scholar 

  18. Jagannathan J, Sheehan JP, Pouratian N et al (2007) Gamma Knife surgery for Cushing’s disease. J Neurosurg 106:980–987

    Article  PubMed  Google Scholar 

  19. Castinetti F, Nagai M, Dufour H et al (2007) Gamma knife radiosurgery is a successful adjunctive treatment in Cushing’s disease. Eur J Endocrinol 156:91–98

    Article  CAS  PubMed  Google Scholar 

  20. Laws ER Jr, Vance ML (1999) Radiosurgery for pituitary tumors and craniopharyngiomas. Neurosurg Clin N Am 10:327–336

    PubMed  Google Scholar 

  21. Sheehan JM, Vance ML, Sheehan JP et al (2000) Radiosurgery for Cushing’s disease after failed transsphenoidal surgery. J Neurosurg 93:738–742

    Article  CAS  PubMed  Google Scholar 

  22. Hoybye C, Grenback A, Rahn T et al (2001) Adrenocorticotropic hormone producing pituitary tumors: 12–22 year follow up after treatment with stereotactic radiosurgery. Neurosurgery 49:284–291

    Article  CAS  PubMed  Google Scholar 

  23. Witt TC, Kondziolka D, Flickinger JC, Lunsford LD (1998) Gamma knife radiosurgery for pituitary tumors. In: Lunsford LD, Kondziolka D, Flickinger JC (eds) Gamma knife brain surgery. Karger, Basel, pp 114–127

  24. Kobayashi T, Kida Y, Mori Y (2002) Gamma knife radiosurgery in the treatment of Cushing disease: long-term results. J Neurosurg 97:422–428

    PubMed  Google Scholar 

  25. Colin P, Jovenin N, Delemer B et al (2005) Treatment of pituitary adenomas by fractionated stereotactic radiotherapy: a prospective study of 110 patients. Int J Radiat Oncol Biol Phys 62:333–341

    Article  PubMed  Google Scholar 

  26. Devin JK, Allen GS, Cmelak AJ et al (2004) The efficacy of linear accelerator radiosurgery in the management of patients with Cushing’s disease. Stereotact Funct Neurosurg 82:254–262

    Article  PubMed  Google Scholar 

  27. Levy RP, Fabrikant JI, Frankel KA et al (1991) Heavy-charged-particle radiosurgery a of the pituitary gland: clinical results of 840 patients. Stereotact Funct Neurosurg 57:22–35

    Article  CAS  PubMed  Google Scholar 

  28. Petit JH, Biller BM, Yock TI et al (2008) Proton stereotactic radiotherapy for persistent Adrenocorticotropin producing adenomas. J Clin Endocrinol Metab 93:393–399

    Article  CAS  PubMed  Google Scholar 

  29. Hughes NR, Lissett CA, Shalet SM (1999) Growth hormone status following treatment for Cushing’s syndrome. Clin Endocrinol (Oxf) 51(1):61–66

    Article  CAS  Google Scholar 

  30. Pecori Giraldi F, Andrioli M, De Marinis L, Bianchi A, Giampietro A, De Martin M, Sacco E, Scacchi M, Pontecorvi A, Cavagnini F, Significant GH (2007) Deficiency after long-term cure by surgery in adult patients with Cushing’s disease. Eur J Endocrinol 156(2):233–239

    Article  PubMed  Google Scholar 

  31. Molitch ME, Clemmons DR, Malozowski S, Merriam GR, Vance ML (2011) Endocrine Society. Evaluation and treatment of adult growth hormone deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 96(6):1587–1609

    Article  CAS  PubMed  Google Scholar 

  32. Jalali R, Mallick I, Dutta D, Goswami S, Gupta T, Munshi A, Deshpande D, Sarin R (2010) Factors influencing neurocognitive outcomes in young patients with benign and low-grade brain tumors treated with stereotactic conformal radiotherapy. Int J Radiat Oncol Biol Phys 77(4):974–979

    Article  PubMed  Google Scholar 

  33. Erridge SC, Conkey DS, Stockton D, Strachan MW, Statham PF, Whittle IR, Grant R, Kerr GR, Gregor A (2009) Radiotherapy for pituitary adenomas: long- term efficacy and toxicity. Radiother Oncol 93(3):597–601

    Article  PubMed  Google Scholar 

  34. Minniti G, Traish D, Ashley S, Gonsalves A, Brada M (2005) Risk of second brain tumor after conservative surgery and radiotherapy for pituitary adenoma: update after an additional 10 years. J Clin Endocrinol Metab 90(2):800–804

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research did not receive any specific Grant from any funding agency in the public, commercial or not-for-profit sector.

Conflict of interest

On behalf of all the contributors, I will act and guarantor and will correspond with the journal from this point onward. There is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sweta Budyal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budyal, S., Lila, A.R., Jalali, R. et al. Encouraging efficacy of modern conformal fractionated radiotherapy in patients with uncured Cushing’s disease. Pituitary 17, 60–67 (2014). https://doi.org/10.1007/s11102-013-0466-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-013-0466-4

Keywords

Navigation