Skip to main content
Log in

Somatotroph pituitary adenoma with acromegaly and autosomal dominant polycystic kidney disease: SSTR5 polymorphism and PKD1 mutation

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

A 39-year-old woman with autosomal dominant polycystic kidney disease (ADPKD) presented with acromegaly and a pituitary macroadenoma. There was a family history of this renal disorder. She had undergone surgery for pituitary adenoma 6 years prior. Physical examination disclosed bitemporal hemianopsia and elevation of both basal growth hormone (GH) 106 ng/mL (normal 0–5) and insulin-like growth factor (IGF-1) 811 ng/mL (normal 48–255) blood levels. A magnetic resonance imaging scan disclosed a 3.0 cm sellar and suprasellar mass with both optic chiasm compression and left cavernous sinus invasion. Pathologic, cytogenetic, molecular and in silico analysis was undertaken. Histologic, immunohistochemical and ultrastructural studies of the lesion disclosed a sparsely granulated somatotroph adenoma. Standard chromosome analysis on the blood sample showed no abnormality. Sequence analysis of the coding regions of PKD1 and PKD2 employing DNA from both peripheral leukocytes and the tumor revealed the most common PKD1 mutation, 5014_5015delAG. Analysis of the entire SSTR5 gene disclosed the variant c.142C>A (p.L48M, rs4988483) in the heterozygous state in both blood and tumor, while no pathogenic mutations were noted in the MEN1, AIP, p27Kip1 and SSTR2 genes. To our knowledge, this is the fourth reported case of a GH-producing pituitary adenoma associated with ADPKD, but the first subjected to extensive morphological, ultrastructural, cytogenetic and molecular studies. The physical proximity of the PKD1 and SSTR5 genes on chromosome 16 suggests a causal relationship between ADPKD and somatotroph adenoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Harris PC, Torres VE (2009) Polycystic kidney disease. Annu Rev Med 60:321–337

    Article  PubMed  CAS  Google Scholar 

  2. Torres VE, Harris PC (2009) Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int 76(2):149–168

    Article  PubMed  Google Scholar 

  3. Melmed S (2006) Medical progress: acromegaly. N Eng J Med 355(24):2558–2573

    Article  CAS  Google Scholar 

  4. Melmed S (2009) Acromegaly pathogenesis and treatment. J Clin Invest 119(11):3189–3202. doi:10.1172/JCI3937539375

    Article  PubMed  CAS  Google Scholar 

  5. Fajfr R, Muller B, Diem P (2002) Hypophyseal incidentaloma in a patient with autosomal dominant polycystic kidney disease. Praxis 91(25–26):1123–1126

    Article  PubMed  CAS  Google Scholar 

  6. Kannabiran M, Singh V, Grewal S (2006) Acromegaly presenting as psychotic disorder in a family with familial autosomal dominant polycystic kidney disease. German J Psychiatry 9:136–138. http://www.gjpsy.uni-goettingen.de/gjp-article-kannabiran.pdf

    Google Scholar 

  7. Rossetti S, Consugar MB, Chapman AB, Torres VE, Guay-Woodford LM, Grantham JJ, Bennett WM, Meyers CM, Walker DL, Bae K, Zhang QJ, Thompson PA, Miller JP, Harris PC (2007) Comprehensive molecular diagnostics in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 18(7):2143–2216. doi:10.1681/ASN.2006121387

    Article  PubMed  CAS  Google Scholar 

  8. Rossetti S, Kubly VJ, Consugar MB, Hopp K, Roy S, Horsley SW, Chauveau D, Rees L, Barratt TM, van’t Hoff WG, Niaudet P, Torres VE, Harris PC (2009) Incompletely penetrant PKD1 alleles suggest a role for gene dosage in cyst initiation in polycystic kidney disease. Kidney Int 75(8):848–855. doi:10.1038/ki.2008.686

    Article  PubMed  CAS  Google Scholar 

  9. Pellegata NS, Quintanilla-Martinez L, Siggelkow H, Samson E, Bink K, Hofler H, Fend F, Graw J, Atkinson MJ (2006) Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci USA 103(42):15558–15563. doi:10.1073/pnas.0603877103

    Article  PubMed  CAS  Google Scholar 

  10. Toledo RA, Lourenco DM Jr, Liberman B, Cunha-Neto MB, Cavalcanti MG, Moyses CB, Toledo SP, Dahia PL (2007) Germline mutation in the aryl hydrocarbon receptor interacting protein gene in familial somatotropinoma. J Clin Endocrinol Metab 92(5):1934–1937. doi:10.1210/jc.2006-2394

    Article  PubMed  CAS  Google Scholar 

  11. Vierimaa O, Georgitsi M, Lehtonen R, Vahteristo P, Kokko A, Raitila A, Tuppurainen K, Ebeling TM, Salmela PI, Paschke R, Gundogdu S, De Menis E, Makinen MJ, Launonen V, Karhu A, Aaltonen LA (2006) Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science 312(5777):1228–1230. doi:10.1126/science.1126100

    Article  PubMed  CAS  Google Scholar 

  12. Ruggenenti P, Remuzzi A, Ondei P, Fasolini G, Antiga L, Ene-Iordache B, Remuzzi G, Epstein FH (2005) Safety and efficacy of long-acting somatostatin treatment in autosomal-dominant polycystic kidney disease. Kidney Int 68(1):206–216

    Article  PubMed  CAS  Google Scholar 

  13. Ben-Shlomo A, Melmed S (2010) Pituitary somatostatin receptor signaling. Trends Endocrinol Metab 21(3):123–133. doi:10.1016/j.tem.2009.12.003

    Article  PubMed  CAS  Google Scholar 

  14. Patel YC (1999) Somatostatin and its receptor family. Front Neuroendocrinol 20(3):157–198. doi:10.1006/frne.1999.0183

    Article  PubMed  CAS  Google Scholar 

  15. Reisine T, Bell GI (1995) Molecular biology of somatostatin receptors. Endocr Rev 16(4):427–442

    PubMed  CAS  Google Scholar 

  16. Shimon I, Taylor JE, Dong JZ, Bitonte RA, Kim S, Morgan B, Coy DH, Culler MD, Melmed S (1997) Somatostatin receptor subtype specificity in human fetal pituitary cultures. Differential role of SSTR2 and SSTR5 for growth hormone, thyroid-stimulating hormone, and prolactin regulation. J Clin Invest 99(4):789–798

    Article  PubMed  CAS  Google Scholar 

  17. Filopanti M, Ronchi C, Ballare E, Bondioni S, Lania AG, Losa M, Gelmini S, Peri A, Orlando C, Beck-Peccoz P, Spada A (2005) Analysis of somatostatin receptors 2 and 5 polymorphisms in patients with acromegaly. J Clin Endocrinol Metab 90(8):4824–4828

    Article  PubMed  CAS  Google Scholar 

  18. Greenman Y, Melmed S (1994) Expression of three somatostatin receptor subtypes in pituitary adenomas: evidence for preferential SSTR5 expression in the mammosomatotroph lineage. J Clin Endocrinol Metab 79(3):724–729

    Article  PubMed  CAS  Google Scholar 

  19. Thodou E, Kontogeorgos G, Theodossiou D, Pateraki M (2006) Mapping of somatostatin receptor types in GH or/and PRL producing pituitary adenomas. J Clin Pathol 59(3):274–279. doi:10.1136/jcp.2005.026914

    Article  PubMed  CAS  Google Scholar 

  20. Tulipano G, Bonfanti C, Milani G, Billeci B, Bollati A, Cozzi R, Maira G, Murphy WA, Poiesi C, Turazzi S, Giustina A (2001) Differential inhibition of growth hormone secretion by analogs selective for somatostatin receptor subtypes 2 and 5 in human growth-hormone-secreting adenoma cells in vitro. Neuroendocrinology 73(5):344–351

    Article  PubMed  CAS  Google Scholar 

  21. Shimon I (2003) Somatostatin receptors in pituitary and development of somatostatin receptor subtype-selective analogs. Endocrine 20(3):265–269. doi:10.1385/ENDO:20:3:265

    Article  PubMed  CAS  Google Scholar 

  22. Taboada GF, Luque RM, Bastos W, Guimaraes RF, Marcondes JB, Chimelli LM, Fontes R, Mata PJ, Filho PN, Carvalho DP, Kineman RD, Gadelha MR (2007) Quantitative analysis of somatostatin receptor subtype (SSTR1–5) gene expression levels in somatotropinomas and non-functioning pituitary adenomas. Eur J Endocrinol 156(1):65–74. doi:10.1530/eje.1.02313

    Article  PubMed  CAS  Google Scholar 

  23. van der Hoek J, Lamberts SW, Hofland LJ (2007) Preclinical and clinical experiences with the role of somatostatin receptors in the treatment of pituitary adenomas. Eur J Endocrinol 156(Suppl 1):S45–S51. doi:10.1530/eje.1.02350

    Article  PubMed  Google Scholar 

  24. Melmed S, Colao A, Barkan A, Molitch M, Grossman AB, Kleinberg D, Clemmons D, Chanson P, Laws E, Schlechte J, Vance ML, Ho K, Giustina A (2009) Guidelines for acromegaly management: an update. J Clin Endocrinol Metab 94(5):1509–1517

    Article  PubMed  CAS  Google Scholar 

  25. Bronstein MD (2006) Acromegaly molecular expression of somatostatin receptor subtypes and treatment outcome. Frontiers Horm Res 35:129–134

    Article  CAS  Google Scholar 

  26. Casarini AP, Jallad RS, Pinto EM, Soares IC, Nonogaki S, Giannella-Neto D, Musolino NR, Alves VA, Bronstein MD (2009) Acromegaly: correlation between expression of somatostatin receptor subtypes and response to octreotide-lar treatment. Pituitary 12(4):297–303. doi:10.1007/s11102-009-0175-1

    Article  PubMed  CAS  Google Scholar 

  27. van der Lely AJ, de Herder WW, Lamberts SW (1999) New medical treatment for acromegaly. Pituitary 2(1):89–92

    Article  PubMed  Google Scholar 

  28. Vitale G, Pivonello R, Ferone D, De Martino MC, Auriemma RS, Caraglia M, Abbruzzese A, Lombardi G, Colao A (2004) The role of somatostatin receptors in the medical treatment of acromegaly. Dig Liver Dis 36(Suppl 1):S55–S59

    Article  PubMed  CAS  Google Scholar 

  29. Ballare E, Persani L, Lania AG, Filopanti M, Giammona E, Corbetta S, Mantovani S, Arosio M, Beck-Peccoz P, Faglia G, Spada A (2001) Mutation of somatostatin receptor type 5 in an acromegalic patient resistant to somatostatin analog treatment. J Clin Endocrinol Metab 86(8):3809–3814

    Article  PubMed  CAS  Google Scholar 

  30. Caroli A, Antiga L, Cafaro M, Fasolini G, Remuzzi A, Remuzzi G, Ruggenenti P (2010) Reducing polycystic liver volume in ADPKD: effects of somatostatin analogue octreotide. Clin J Am Soc Nephrol 5(5):783–789. doi:10.2215/CJN.05380709

    Article  PubMed  CAS  Google Scholar 

  31. Hogan MC, Masyuk TV, Page LJ, Kubly VJ, Bergstralh EJ, Li X, Kim B, King BF, Glockner J, Holmes DR 3rd, Rossetti S, Harris PC, LaRusso NF, Torres VE (2010) Randomized clinical trial of long-acting somatostatin for autosomal dominant polycystic kidney and liver disease. J Am Soc Nephrol 21(6):1052–1061. doi:10.1681/ASN.2009121291

    Article  PubMed  CAS  Google Scholar 

  32. van Keimpema L, Nevens F, Vanslembrouck R, van Oijen MG, Hoffmann AL, Dekker HM, de Man RA, Drenth JP (2009) Lanreotide reduces the volume of polycystic liver: a randomized, double-blind, placebo-controlled trial. Gastroenterology 137(5):1661–1668. doi:10.1053/j.gastro.2009.07.052 e1661–e1662

    Article  PubMed  Google Scholar 

  33. Parker E, Newby LJ, Sharpe CC, Rossetti S, Streets AJ, Harris PC, O’Hare MJ, Ong AC (2007) Hyperproliferation of PKD1 cystic cells is induced by insulin-like growth factor-1 activation of the Ras/Raf signalling system. Kidney Int 72(2):157–165. doi:10.1038/sj.ki.5002229

    Article  PubMed  CAS  Google Scholar 

  34. Manara R, Maffei P, Citton V, Rizzati S, Bommarito G, Ermani M, Albano I, Della Puppa A, Carollo C, Pavesi G, Scanarini M, Ceccato F, Sicolo N, Mantero F, Scaroni C, Martini C (2011) Increased rate of intracranial saccular aneurysms in acromegaly: an MR angiography study and review of the literature. J Clin Endocrinol Metab 96(5):1292–1300. doi:10.1210/jc.2010-2721

    Article  PubMed  CAS  Google Scholar 

  35. Sandford R, Sgotto B, Burn T, Brenner S (1996) The tuberin (TSC2), autosomal dominant polycystic kidney disease (PKD1), and somatostatin type V receptor (SSTR5) genes form a synteny group in the Fugu genome. Genomics 38(1):84–86. doi:10.1006/geno.1996.0596

    Article  PubMed  CAS  Google Scholar 

  36. Johansson M, McKay JD, Wiklund F, Rinaldi S, Hallmans G, Balter K, Adami HO, Gronberg H, Stattin P, Kaaks R (2009) Genetic variation in the SST gene and its receptors in relation to circulating levels of insulin-like growth factor-I, IGFBP3, and prostate cancer risk. Cancer Epidemiol Biomarkers Prev 18(5):1644–1650. doi:10.1158/1055-9965.EPI-08-0893

    Article  PubMed  CAS  Google Scholar 

  37. Nyegaard M, Borglum AD, Bruun TG, Collier DA, Russ C, Mors O, Ewald H, Kruse TA (2002) Novel polymorphisms in the somatostatin receptor 5 (SSTR5) gene associated with bipolar affective disorder. Mol Psychiatry 7(7):745–754. doi:10.1038/sj.mp.4001049

    Article  PubMed  CAS  Google Scholar 

  38. Li D, Tanaka M, Brunicardi FC, Fisher WE, Gibbs RA, Gingras MC (2011) Association between somatostatin receptor 5 gene polymorphisms and pancreatic cancer risk and survival. Cancer. doi:10.1002/cncr.25858

  39. Hassaneen W, Cahill DP, Fuller GN, Levine NB (2010) Immunohistochemical detection of somatostatin receptor subtype 5 (SSTR-5) in cushing adenoma. J Neurooncol 98(1):151–152. doi:10.1007/s11060-009-0048-5

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the Jarislowsky and Lloyd Carr Harris Foundations for their continuous support. RA Toledo is supported by a 2009 FAPESP (Sao Paulo State Research Foundation) post-doctoral fellowship. SAP Toledo is partially supported by a 2010 and 2011 CNPq (National Research Foundation) grants. The ADPKD gene analyses were funded by NIDDK grant DK058816 and the Mayo PKD Translational Center (DK090728). Lastly, the authors thank Mrs. Denise Chase of Mayo Clinic for her excellent secretarial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd W. Scheithauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Syro, L.V., Sundsbak, J.L., Scheithauer, B.W. et al. Somatotroph pituitary adenoma with acromegaly and autosomal dominant polycystic kidney disease: SSTR5 polymorphism and PKD1 mutation. Pituitary 15, 342–349 (2012). https://doi.org/10.1007/s11102-011-0325-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-011-0325-0

Keywords

Navigation