Skip to main content
Log in

Polyuria and polydipsia in a young child: diagnostic considerations and identification of novel mutation causing familial neurohypophyseal diabetes insipidus

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

A 3-year 5-month-old boy was seen for second opinion regarding polydipsia and polyuria. Previously, a diagnosis of primary polydipsia was made after normal urine concentration after overnight water deprivation testing. The boy’s father, paternal grandfather, and paternal aunt had diabetes insipidus treated with desmopressin acetate. Based on this young boy’s symptoms, ability to concentrate urine after informal overnight water deprivation, and family history of diabetes insipidus, we performed AVP gene mutation testing. Analysis of the AVP gene revealed a novel mutation G54E that changes a normal glycine to glutamic acid, caused by a guanine to adenine change at nucleotide g.1537 (exon 2) of the AVP gene. Commonly, patients with familial neurohypophyseal diabetes insipidus (FNHDI) present within the first 6 years of life with progressively worsening polyuria and compensatory polydipsia. Since these patients have progressive loss of arginine vasopressin (AVP), they may initially respond normally to water deprivation testing and have normal pituitary findings on brain MRI. Genetic testing may be helpful in these patients, as well as preemptively diagnosing those with a mutation, thereby avoiding unnecessary surveillance of those unaffected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Abbreviations

NHDI:

Neurohypophyseal diabetes insipidus

NDI:

Nephrogenic diabetes insipidus

AVP:

Arginine vasopressin

NPII:

Neurophysin-II

FNHDI:

Familial neurohypophyseal diabetes insipidus

FNDI:

Familial nephrogenic diabetes insipidus

DI:

Diabetes insipidus

ER:

Endoplastic reticulum

References

  1. Fluck CE, Deladoey J, Nayak S, Zeller O, Kopp P, Mullis PE (2001) Autosomal dominant neurohypophyseal diabetes insipidus in a Swiss family, caused by a novel mutation (C59Delta/A60W) in the neurophysin moiety of prepro-vasopressin-neurophysin II (AVP-NP II). Eur J Endocrinol 145(4):439–444

    Article  PubMed  CAS  Google Scholar 

  2. Polymeropoulos MH, Swift RG, Swift M (1994) Linkage of the gene for Wolfram syndrome to markers on the short arm of chromosome 4. Nat Genet 8(1):95–97

    Article  PubMed  CAS  Google Scholar 

  3. Inoue H, Tanizawa Y, Wasson J, Behn P, Kalidas K, Bernal-Mizrachi E et al (1998) A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet 20(2):143–148

    Article  PubMed  CAS  Google Scholar 

  4. Rao VV, Loffler C, Battey J, Hansmann I (1992) The human gene for oxytocin-neurophysin I (OXT) is physically mapped to chromosome 20p13 by in situ hybridization. Cytogenet Cell Genet 61(4):271–273

    Article  PubMed  CAS  Google Scholar 

  5. Repaske DR, Phillips JA 3rd, Kirby LT, Tze WJ, D’Ercole AJ, Battey J (1990) Molecular analysis of autosomal dominant neurohypophyseal diabetes insipidus. J Clin Endocrinol Metab 70(3):752–757

    Article  PubMed  CAS  Google Scholar 

  6. Sausville E, Carney D, Battey J (1985) The human vasopressin gene is linked to the oxytocin gene and is selectively expressed in a cultured lung cancer cell line. J Biol Chem 260(18):10236–10241

    PubMed  CAS  Google Scholar 

  7. Crumley J, Bichet D, Morgan K, Arthus MF, Binette D, Lema J, Lonergan M, Michaud A, Turner M, Tzenova J, Yan R. Nephrogenic and neurogenic diabetes insipidus

  8. Willcutts MD, Felner E, White PC (1999) Autosomal recessive familial neurohypophyseal diabetes insipidus with continued secretion of mutant weakly active vasopressin. Human Mol Genet 8(7):1303–1307

    Article  CAS  Google Scholar 

  9. Land H, Grez M, Ruppert S, Schmale H, Rehbein M, Richter D et al (1983) Deduced amino acid sequence from the bovine oxytocin-neurophysin I precursor cDNA. Nature 302(5906):342–344

    Article  PubMed  CAS  Google Scholar 

  10. Land H, Schutz G, Schmale H, Richter D (1982) Nucleotide sequence of cloned cDNA encoding bovine arginine vasopressin-neurophysin II precursor. Nature 295(5847):299–303

    Article  PubMed  CAS  Google Scholar 

  11. Brownstein MJ, Russell JT, Gainer H (1980) Synthesis, transport, and release of posterior pituitary hormones. Science 207(4429):373–378

    Article  PubMed  CAS  Google Scholar 

  12. Fassina G, Chaiken IM (1988) Structural requirements of peptide hormone binding for peptide-potentiated self-association of bovine neurophysin II. J Biol Chem 263(27):13539–13543

    PubMed  CAS  Google Scholar 

  13. Rholam M, Nicolas P, Cohen P (1982) Binding of neurohypophyseal peptides to neurophysin dimer promotes formation of compact and spherical complexes. Biochemistry 21(20):4968–4973

    Article  PubMed  CAS  Google Scholar 

  14. Russell TA, Ito M, Yu RN, Martinson FA, Weiss J, Jameson JL (2003) A murine model of autosomal dominant neurohypophyseal diabetes insipidus reveals progressive loss of vasopressin-producing neurons. J Clin Invest 112(11):1697–1706

    PubMed  CAS  Google Scholar 

  15. Ito M, Yu RN, Jameson JL (1999) Mutant vasopressin precursors that cause autosomal dominant neurohypophyseal diabetes insipidus retain dimerization and impair the secretion of wild-type proteins. J Biol Chem 274(13):9029–9037

    Article  PubMed  CAS  Google Scholar 

  16. Ito M, Jameson JL (1997) Molecular basis of autosomal dominant neurohypophyseal diabetes insipidus. Cellular toxicity caused by the accumulation of mutant vasopressin precursors within the endoplasmic reticulum. J Clin Invest 99(8):1897–1905

    Article  PubMed  CAS  Google Scholar 

  17. Christensen JH, Siggaard C, Corydon TJ, Robertson GL, Gregersen N, Bolund L et al (2004) Differential cellular handling of defective arginine vasopressin (AVP) prohormones in cells expressing mutations of the AVP gene associated with autosomal dominant and recessive familial neurohypophyseal diabetes insipidus. J Clin Endocrinol Metab 89(9):4521–4531

    Article  PubMed  CAS  Google Scholar 

  18. Christensen JH, Siggaard C, Corydon TJ, Robertson GL, Gregersen N, Bolund L et al (2004) Impaired trafficking of mutated AVP prohormone in cells expressing rare disease genes causing autosomal dominant familial neurohypophyseal diabetes insipidus. Clin Endocrinol (Oxf) 60(1):125–136

    Article  CAS  Google Scholar 

  19. Siggaard C, Rittig S, Corydon TJ, Andreasen PH, Jensen TG, Andresen BS et al (1999) Clinical and molecular evidence of abnormal processing and trafficking of the vasopressin preprohormone in a large kindred with familial neurohypophyseal diabetes insipidus due to a signal peptide mutation. J Clin Endocrinol Metab 84(8):2933–2941

    Article  PubMed  CAS  Google Scholar 

  20. Elias PC, Elias LL, Torres N, Moreira AC, Antunes-Rodrigues J, Castro M (2003) Progressive decline of vasopressin secretion in familial autosomal dominant neurohypophyseal diabetes insipidus presenting a novel mutation in the vasopressin-neurophysin II gene. Clin Endocrinol (Oxf) 59(4):511–518

    Article  CAS  Google Scholar 

  21. Sunyaev S. Polyphen: prediction of functional effects of nsSNPs

  22. Heppner C, Kotzka J, Bullmann C, Krone W, Muller-Wieland D (1998) Identification of mutations of the arginine vasopressin-neurophysin II gene in two kindreds with familial central diabetes insipidus. J Clin Endocrinol Metab 83(2):693–696

    Article  PubMed  CAS  Google Scholar 

  23. Gagliardi PC, Bernasconi S, Repaske DR (1997) Autosomal dominant neurohypophyseal diabetes insipidus associated with a missense mutation encoding Gly23 –> Val in neurophysin II. J Clin Endocrinol Metab 82(11):3643–3646

    Article  PubMed  CAS  Google Scholar 

  24. Chitturi S, Harris M, Thomsett MJ, Bowling F, McGown I, Cowley D et al (2008) Utility of AVP gene testing in familial neurohypophyseal diabetes insipidus. Clin Endocrinol (Oxf) 69(6):926–930

    Article  Google Scholar 

  25. Leger J, Velasquez A, Garel C, Hassan M, Czernichow P (1999) Thickened pituitary stalk on magnetic resonance imaging in children with central diabetes insipidus. J Clin Endocrinol Metab 84(6):1954–1960

    Article  PubMed  CAS  Google Scholar 

  26. Ramelli GP, von der Weid N, Stanga Z, Mullis PE, Buergi U (1998) Suprasellar germinomas in childhood and adolescence: diagnostic pitfalls. J Pediatr Endocrinol Metab 11(6):693–697

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of Interest Statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D. Stephen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stephen, M.D., Fenwick, R.G. & Brosnan, P.G. Polyuria and polydipsia in a young child: diagnostic considerations and identification of novel mutation causing familial neurohypophyseal diabetes insipidus. Pituitary 15 (Suppl 1), 1–5 (2012). https://doi.org/10.1007/s11102-010-0230-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-010-0230-y

Keywords

Navigation