Skip to main content
Log in

Evaluation of antioxidant systems in pituitary-adrenal axis diseases

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

The role of adrenal steroids in antioxidant regulation is not known. Previously, we demonstrated some Coenzyme Q10 (CoQ10) alterations in pituitary diseases, which can induce complex pictures due to alterations of different endocrine axes. Therefore we determined CoQ10 and Total Antioxidant Capacity (TAC) in pituitary-dependent adrenal diseases: 6 subjects with ACTH-dependent adrenal hyperplasia (AH); 19 with secondary isolated hypoadrenalism (IH), 19 with associated hypothyroidism (multiple pituitary deficiencies, MPH). CoQ10 was assayed by HPLC; TAC by the system metmyoglobin-H2O2, which, interacting with the chromogenous 2,2I-azinobis-(3-ethylbenzothiazoline-6-sulphonate), generates a spectroscopically revealed radical compound after a latency time (Lag) proportional to the antioxidant content. CoQ10 levels were significantly lower in IH than AH and MPH, with a similar trend when adjusted for cholesterol. Also TAC was lower in IH than in AH and MPH, suggesting that adrenal hormones can influence antioxidants. However, since thyroid hormones modulate CoQ10 levels and metabolism, when thyroid deficiency coexists it seems to play a prevalent influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Baxter JD, Forsham PH (1972) Tissue effects of glucocorticoids. Am J Med 53:573–589

    Article  CAS  PubMed  Google Scholar 

  2. Krieger DT (1975) Rhythms of ACTH and corticosteroid secretion in health and disease, and their experimental modification. J Steroid Biochem 6:785–791

    Article  CAS  PubMed  Google Scholar 

  3. Howlett TA, Rees LH, Besser GM (1985) Cushing’s syndrome. Clin Endocrinol Metab 14:911–945

    CAS  PubMed  Google Scholar 

  4. Burke CW (1985) Adrenocortical insufficiency. Clin Endocrinol Metab 14:947–976

    CAS  PubMed  Google Scholar 

  5. Chrousos GP, Gold PW (1998) A healthy body in a healthy mind- and viceversa- the damaging power of “uncontrollable” stress. J Clin Endocrinol Metab 83:1842–1845

    Article  CAS  PubMed  Google Scholar 

  6. Rosmond R, Bjorntorp P (2000) The hypothalamic-pituitary-adrenal axis activity as a predictor of cardiovascular disease, type 2 diabetes and stroke. J Inter Med 247:188–197

    Article  CAS  Google Scholar 

  7. Colao A, Pivonello R, Spiezia S et al (1999) Persistence of increased cardiovascular risk in patients with Cushing’s disease after five years of successful cure. J Clin Endocrinol Metab 84:2664–2672

    Article  CAS  PubMed  Google Scholar 

  8. Erichsen MM, Lovas K, Fougner KJ et al (2009) Normal overall mortality rate in Addison’s diseases, but young patients are at risk of premature death. Eur J Endocrinol 160:233–237

    Article  CAS  PubMed  Google Scholar 

  9. Giordano R, Marzotti S, Balbo M, et al. (2009) Metabolic and cardiovascular profile in patients with Addison’s disease under conventional glucocorticoid replacement. J Endocrinol Invest Jul 20 [Epub ahead of print]. doi:10.3275/6437

  10. Lakka HM, Laaksonen DE, Lakka TA et al (2002) The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 288:2709–2716

    Article  PubMed  Google Scholar 

  11. Isomaa B, Almgren P, Tuomi T et al (2001) Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 24:683–689

    Article  CAS  PubMed  Google Scholar 

  12. Orchard TJ, Virella G, Forrest KY et al (1999) Antibodies to oxidized LDL predict coronary artery disease in type 1 diabetes: a nested case-control study from the Pittsburg epidemiology of diabetes complications study. Diabetes 48:1454–1458

    Article  CAS  PubMed  Google Scholar 

  13. Laight DW, Desai KM, Gopaul NK et al (1999) F2-isoprostane evidence of oxidant stress in the insulin resistant, obese Zucker rat: effects of vitamine E. Eur J Pharmacol 377:89–92

    Article  CAS  PubMed  Google Scholar 

  14. Kodama M, Inoue F, Saito H, Oda T, Sato Y (1997) Formation of free radicals from steroid hormones: possible significance in environmental carcinogenesis. Anticancer Res 17:439–444

    CAS  PubMed  Google Scholar 

  15. Hornsby PJ (1986) Cytochrome P-450/pseudosubstrate interactions and the role of antioxidants in the adrenal cortex. Endocr Res 12:469–494

    Article  CAS  PubMed  Google Scholar 

  16. Dandona P, Suri M, Hamouda W et al (1999) Hydrocortisone-induced inhibition of reactive oxygen species by polymorphonuclear neutrophils. Crit Care Med 27:2583–2584

    Article  Google Scholar 

  17. Bekesi G, Kakucs R, Varbiro S et al (2000) In vitro effects of different steroid hormones on superoxide anion production of human neutrophil granulocytes. Steroids 65:889–894

    Article  CAS  PubMed  Google Scholar 

  18. Morin C, Zini R, Simon N et al (2000) Low glucocorticoid concentrations decrease oxidative phosphorylation of isolated rat brain mitochondria: an additional effect of desamethasone. Fundam Clin Pharmacol 14:493–500

    Article  CAS  PubMed  Google Scholar 

  19. Mc Anulty SR, Mc Anulty LS, Nieman DC et al (2003) Influence of carbohydrate ingestion on oxidative stress and plasma antioxidant potential following a 3 h run. Free Rad Res 37:835–840

    Article  CAS  Google Scholar 

  20. Zelinskii BA, Vlasenko MV (1990) Lipid peroxidation in patients with chronic adrenal cortex failure. Probl Endokrinol 36:37–40

    CAS  Google Scholar 

  21. Prazny M, Jezkova J, Horova E et al (2008) Impaired microvascular reactivity and endothelial function in patients with Cushing’s syndrome: influence of arterial hypertension. Physiol Res 57:13–22

    CAS  PubMed  Google Scholar 

  22. Tishenina RS (1986) α-tocopherol concentration of the blood plasma and erythrocytes in patients with symptomatic obesity due to hypothalamo-hypophyseal-adrenal disease. Probl Endokrinol (Mosk) 32:25–30

    CAS  Google Scholar 

  23. Keen JA, McLaren M, Chandler KJ, McGorum BC (2004) Biochemical indices of vascular function, glucose metabolism and oxidative stress in horses with equine Cushing’s disease. Equine Vet J 36:226–229

    Article  CAS  PubMed  Google Scholar 

  24. Mancini A, De Marinis L, Calabrò F et al (1991) Physiopathological relevance of Coenzyme Q10 in thyroid disorders: CoQ10 concentrations in normal and diseased human thyroid tissue. In: Folkers K, Littarru GP, Yamagami T (eds) Biomedical and clinical aspects of coenzyme Q. Elsevier, Amsterdam, pp 441–448

    Google Scholar 

  25. Mancini A, Calabrò F, Fiumara C et al (1992) Plasma Coenzyme Q10 determination in acromegaly. Exp Clin Endocrinol Life Sci Adv 11:55–60

    Google Scholar 

  26. Dokmetas HS, Colak R, Kelestimur F, Selcuklu A, Unluhizarci K, Bayram F (2000) A comparison between the 1-mg adrenocorticotropin (ACTH) test, the short ACTH (250 μg) test, and the insulin tolerance test in the assessment of hypothalamo-pituitary-adrenal axis immediately after pituitary surgery. J Clin Endocrinol Metab 85:3713–3719

    Article  CAS  PubMed  Google Scholar 

  27. Mosca F, Fattorini D, Bompadre S et al (2002) Assay of Coenzyme Q(10) in plasma by a single dilution step. Anal Biochem 305:49–52

    Article  CAS  PubMed  Google Scholar 

  28. Tomasetti M, Alleva R, Solenghi MD et al (1999) Distribution of antioxidants among blood components and lipoproteins: significance of lipids/CoQ10 ratio as a possible marker of increased risk for atherosclerosis. Biofactors 9:231–240

    Article  CAS  PubMed  Google Scholar 

  29. Meucci E, Milardi D, Mordente A et al (2003) Total antioxidant capacity in patients with varicoceles. Fertil Steril 79:1577–1583

    Article  PubMed  Google Scholar 

  30. Rice-Evans C, Miller NJ (1994) Total antioxidant status in plasma and body fluids. Methods Enzymol 234:279–293

    Article  CAS  PubMed  Google Scholar 

  31. Thomas ST, Leichtweis SB, Pettersson K et al (2001) Dietary cosupplementation with vitamin E and CoQ10 inhibits atherosclerosis in apolipoprotein E gene knockout mice. Arterioscler Thromb Vasc Biol 21:585–593

    CAS  PubMed  Google Scholar 

  32. Singh RB, Neki NS, Kartikey K et al (2003) Effect of Coenzyme Q10 on risk of atherosclerosis in patients with recent myocardial infarction. Mol Cell Biochem 246:75–82

    Article  CAS  PubMed  Google Scholar 

  33. Yalcin A, Kilinc E, Sagcan A et al (2004) Coenzyme Q10 concentrations in coronary artery disease. Clin Biochem 37:706–709

    Article  CAS  PubMed  Google Scholar 

  34. Koroshetz WJ, Jenkins BG, Rosen BR et al (1997) Assessment of energy metabolism defects in Huntington’s disease and possible therapy with coenzyme Q10. Ann Neurol 41:160–165

    Article  CAS  PubMed  Google Scholar 

  35. Beal MF, Matthews RT (1997) Coenzyme Q10 in the central nervous system and its potential usefulness in the treatment of neurodegenerative diseases. Mol Aspects Med 18:169–179

    Article  Google Scholar 

  36. Crane FL (2001) Biochemical functions of coenzyme Q10. J Am Coll Nutr 20:591–598

    CAS  PubMed  Google Scholar 

  37. Groneberg DA, Kindermann S, Althammer M et al (2001) Coenzyme Q10 affects expression of genes involved in cell signalling, metabolism and transport in human CaCO-2 cells. Int J Biochem Cell Biol 37:1208–1218

    Article  CAS  Google Scholar 

  38. Prior RL, Cao G (1999) In vivo total antioxidant capacity: comparison of different analytical methods. Free Rad Biol Med 27:1173–1181

    Article  CAS  PubMed  Google Scholar 

  39. Bartoz G (2003) Total antioxidant capacity. Adv Clin Chem 37:219–292

    Article  Google Scholar 

  40. Chevion S, Chevion M (2000) Antioxidant status and human health. Use of cyclic voltammetry for the evaluation of the antioxidant capacity of plasma and of edible plants. Ann N Y Acad Sci 899:308–325

    Article  CAS  PubMed  Google Scholar 

  41. Kedziora-Kornatowska K, Bartosz M, Mussur M et al (2003) The total antioxidant capacity of blood plasma during cardiovasculary bypass surgery in patients with coronary heart disease. Cell Mol Biol Lett 8:973–977

    CAS  PubMed  Google Scholar 

  42. Dorin RI, Qualls CR, Crapo LM (2003) Diagnosis of adrenal insufficiency. Ann Intern Med 139:194–204

    PubMed  Google Scholar 

  43. Reimondo G, Bovio S, Allasino B, Terzolo M, Angeli A (2008) Secondary hypoadrenalism. Pituitary 11:147–154

    Article  CAS  PubMed  Google Scholar 

  44. Mancini A, Leone E, Festa R et al (2008) Effects of testosterone on antioxidant systems in male secondary hypogonadism. J Androl 29:622–629

    Article  CAS  PubMed  Google Scholar 

  45. Tsopanakis C, Tsopanakis A (1998) Stress hormonal factors, fatigue, and oxidant responses to prolonged speed driving. Pharmacol Biochem Behav 60:747–751

    Article  CAS  PubMed  Google Scholar 

  46. Vargas CR, Wajner M, Sirtori LR et al (2004) Evidence that oxidative stress is increased in patients with X-linked adrenoleukodystrophy. Biochim Biophys Acta 20:26–32

    Google Scholar 

  47. Di Biase A, Salvati S, Vari R et al (2000) Susceptibility to oxidation of plasma low-density lipoprotein in X-linked adrenoleukodystrophy: effects of simvastatin treatment. Mol Genet Metab 71:651–655

    Article  CAS  PubMed  Google Scholar 

  48. Baschetti R (2003) Chronic fatigue syndrome: an endocrine disease off limits for endocrinologists? Eur J Clin Invest 33:1029–1031

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mancini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mancini, A., Leone, E., Silvestrini, A. et al. Evaluation of antioxidant systems in pituitary-adrenal axis diseases. Pituitary 13, 138–145 (2010). https://doi.org/10.1007/s11102-009-0213-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-009-0213-z

Keywords

Navigation