Skip to main content

Advertisement

Log in

Genes involved in neuroendocrine tumor biology

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

The fascinating, but often unpredictable, biology of neuroendocrine tumors (NETs) make the management of these malignancies a real challenge. The more recent development of high-throughput genomic and proteomic techniques, have opened a window to an increased knowledge of the biology of NETs. This review will discuss genes thought to play a role in the context of NE tumor biology, with particularly attention to those that may be potential new diagnostic and prognostic markers, as well as therapeutic targets. NETs constitute a heterogeneous group of neoplasm that may arise in virtually every topographic localization in the body, as a consequence of malignant transformation of various types of NE cells. Since NETs arising in the gastroenteropancreatic (GEP) or bronchopulmonary system are by far the most common, this review focuses on these entities, but lines are drawn to other NETs as well. Although large-scale gene expression analysis undoubtly have raised interesting new hypothesis concerning genes thought to play a role in tumor biology, discrepancies observed between studies and various platforms used, emphasizes the need to not only standardize the way microarray data are reported, but also to introduce standards in sample taking, processing and study design. In addition, the recognition of the complexity of the human proteome, with regard to generation of multiple isoforms from one gene, has created additional challenges. However, some goals have been reached already, as new knowledge has been translated into development of novel promising therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Falkmer S (1993) Phylogeny and ontogeny of the neuroendocrine cells of the gastrointestinal tract. Endocrinol Metab Clin North Am 22:731–752

    PubMed  CAS  Google Scholar 

  2. Wick MR (2000) Neuroendocrine neoplasia. Current concepts. Am J Clin Pathol 113:331–335

    Article  PubMed  CAS  Google Scholar 

  3. DeLellis RA (2001) The neuroendocrine system and its tumors: an overview. Am J Clin Pathol 115(Suppl):S5–S16

    PubMed  Google Scholar 

  4. Stephenson TJ (2006) Prognostic and predictive factors in endocrine tumours. Histopathology 48:629–643

    Article  PubMed  CAS  Google Scholar 

  5. Hauser H, Wolf G, Uranus S, Klimpfinger M (1995) Neuroendocrine tumours in various organ systems in a ten-year period. Eur J Surg Oncol 21:297–300

    Article  PubMed  CAS  Google Scholar 

  6. Soga J (2003) Carcinoids and their variant endocrinomas. An analysis of 11842 reported cases. J Exp Clin Cancer Res 22:517–530

    PubMed  CAS  Google Scholar 

  7. Modlin IM, Lye KD, Kidd M (2003) A 5-decade analysis of 13,715 carcinoid tumors. Cancer 97:934–959

    Article  PubMed  Google Scholar 

  8. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  PubMed  CAS  Google Scholar 

  9. http://www.ornl.gov/sci/techresources/Human_Genome/home. shtml

  10. Quackenbush J (2006) Microarray analysis and tumor classification. N Engl J Med 354:2463–2472

    Article  PubMed  CAS  Google Scholar 

  11. Gulmann C, Sheehan KM, Kay EW, Liotta LA, Petricoin EF 3rd (2006) Array-based proteomics: mapping of protein circuitries for diagnostics, prognostics, and therapy guidance in cancer. J Pathol 208:595–606

    Article  PubMed  CAS  Google Scholar 

  12. Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4:844–847

    Article  PubMed  CAS  Google Scholar 

  13. Kloppel G, Anlauf M (2005) Epidemiology, tumour biology and histopathological classification of neuroendocrine tumours of the gastrointestinal tract. Best Pract Res Clin Gastroenterol 19:507–517

    Article  PubMed  Google Scholar 

  14. Rindi G, Leiter AB, Kopin AS, Bordi C, Solcia E (2004) The “normal” endocrine cell of the gut: changing concepts and new evidences. Ann NY Acad Sci 1014:1–12

    Article  PubMed  CAS  Google Scholar 

  15. Solcia E, Rindi G, Buffa R, Fiocca R, Capella C (2000) Gastric endocrine cells: types, function and growth. Regul Pept 93:31–35

    Article  PubMed  CAS  Google Scholar 

  16. Kidd M, Modlin IM, Mane SM, Camp RL, Shapiro MD (2006) Q RT-PCR detection of chromogranin A: a new standard in the identification of neuroendocrine tumor disease. Ann Surg 243:273–280

    Article  PubMed  Google Scholar 

  17. Kloppel G (2000) Mixed exocrine-endocrine tumors of the pancreas. Semin Diagn Pathol 17:104–108

    PubMed  CAS  Google Scholar 

  18. Capella C, La Rosa S, Uccella S, Billo P, Cornaggia M (2000) Mixed endocrine-exocrine tumors of the gastrointestinal tract. Semin Diagn Pathol 17:91–103

    PubMed  CAS  Google Scholar 

  19. Jain D, Eslami-Varzaneh F, Takano AM, Ayer U, Umashankar R, Muller R, Klimstra DS (2005) Composite glandular and endocrine tumors of the stomach with pancreatic acinar differentiation. Am J Surg Pathol 29:1524–1529

    Article  PubMed  Google Scholar 

  20. Bofin AM, Qvigstad G, Waldum C, Waldum HL (2002) Neuroendocrine differentiation in carcinoma of the breast. Tyramide signal amplification discloses chromogranin A-positive tumour cells in more breast tumours than previously realized. APMIS 110:658–664

    Article  PubMed  CAS  Google Scholar 

  21. Yao GY, Zhou JL, Lai MD, Chen XQ, Chen PH (2003) Neuroendocrine markers in adenocarcinomas: an investigation of 356 cases. World J Gastroenterol 9:858–861

    PubMed  Google Scholar 

  22. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  23. http://www.cancer.gov/clinicaltrials

  24. www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene

  25. van Eeden S, Offerhaus GJ (2006) Historical, current and future perspectives on gastrointestinal and pancreatic endocrine tumors. Virchows Arch 448:1–6

    Article  PubMed  Google Scholar 

  26. Reubi JC, Schaer JC, Markwalder R, Waser B, Horisberger U, Laissue J (1997) Distribution of somatostatin receptors in normal and neoplastic human tissues: recent advances and potential relevance. Yale J Biol Med 70:471–479

    PubMed  CAS  Google Scholar 

  27. Patel YC (1999) Somatostatin and its receptor family. Front Neuroendocrinology 20:157–198

    Article  CAS  Google Scholar 

  28. Hofsli E (2002) Expression of chromogranin A and somatostatin receptors in pancreatic AR42J cells. Mol Cell Endocrinol 194:165–173

    Article  PubMed  CAS  Google Scholar 

  29. Oberg K, Astrup L, Eriksson B, Falkmer SE, Falkmer UG, Gustafsen J, Haglund C, Knigge U, Vatn MH, Valimaki M, Nordic NE, Tumour Group (2004) Guidelines for the management of gastroenteropancreatic neuroendocrine tumours (including bronchopulmonary and thymic neoplasms). Part I-general overview. Acta Oncol 43:617–625

    Article  PubMed  Google Scholar 

  30. Oberg K, Astrup L, Eriksson B, Falkmer SE, Falkmer UG, Gustafsen J, Haglund C, Knigge U, Vatn MH, Valimaki M, Nordic NE, Tumour Group (2004) Guidelines for the management of gastroenteropancreatic neuroendocrine tumours (including bronchopulmonary and thymic neoplasms). Part II-specific NE tumour types. Acta Oncol 43:626–636

    Article  PubMed  Google Scholar 

  31. Modlin IM, Kidd M, Latich I, Zikusoka MN, Shapiro MD (2005) Current status of gastrointestinal carcinoids. Gastroenterology 128:1717–1751

    Article  PubMed  Google Scholar 

  32. Modlin IM, Kidd M, Pfragner R, Eick GN, Champaneria MC (2006) The functional characterization of normal and neoplastic human enterochromaffin cells. J Clin Endocrinol Metab 91:2340–2348

    Article  PubMed  CAS  Google Scholar 

  33. Essand M, Vikman S, Grawe J, Gedda L, Hellberg C, Oberg K, Totterman TH, Giandomenico V (2005) Identification and characterization of a novel splicing variant of vesicular monoamine transporter 1. J Mol Endocrinol 35:489–501

    Article  PubMed  CAS  Google Scholar 

  34. Hofsli E, Thommesen L, Yadetie F, Langaas M, Kusnierczyk W, Falkmer U, Sandvik AK, Laegreid A (2005) Identification of novel growth factor-responsive genes in neuroendocrine gastrointestinal tumour cells. Br J Cancer 92:1506–1516

    Article  PubMed  CAS  Google Scholar 

  35. Kidd M, Modlin IM, Mane SM, Camp RL, Eick G, Latich I (2006) The role of genetic markers–NAP1L1, MAGE-D2, and MTA1—in defining small-intestinal carcinoid neoplasia. Ann Surg Oncol 13:253–262

    Article  PubMed  Google Scholar 

  36. Kidd M, Modlin IM, Mane SM, Camp RL, Eick GN, Latich I, Zikusoka MN (2006) Utility of molecular genetic signatures in the delineation of gastric neoplasia. Cancer 106:1480–1488

    Article  PubMed  CAS  Google Scholar 

  37. Hofer MD, Kuefer R, Varambally S, Li H, Ma J, Shapiro GI, Gschwend JE, Hautmann RE, Sanda MG, Giehl K, Menke A, Chinnaiyan AM, Rubin MA (2004) The role of metastasis-associated protein 1 in prostate cancer progression. Cancer Res 64:825–829

    Article  PubMed  CAS  Google Scholar 

  38. Gururaj AE, Singh RR, Rayala SK, Holm C, den Hollander P, Zhang H, Balasenthil S, Talukder AH, Landberg G, Kumar R (2006) MTA1, a transcriptional activator of breast cancer amplified sequence 3. Proc Natl Acad Sci USA 103:6670–6675

    Article  PubMed  CAS  Google Scholar 

  39. Nicolson GL, Nawa A, Toh Y, Taniguchi S, Nishimori K, Moustafa A (2003) Tumor metastasis-associated human MTA1 gene and its MTA1 protein product: role in epithelial cancer cell invasion, proliferation and nuclear regulation. Clin Exp Metastasis 20:19–24

    Article  PubMed  CAS  Google Scholar 

  40. Li M, Lin YM, Hasegawa S, Shimokawa T, Murata K, Kameyama M, Ishikawa O, Katagiri T, Tsunoda T, Nakamura Y, Furukawa Y (2004) Genes associated with liver metastasis of colon cancer, identified by genome-wide cDNA microarray. Int J Oncol 24:305–312

    PubMed  Google Scholar 

  41. Line A, Slucka Z, Stengrevics A, Silina K, Li G, Rees RC (2002) Characterisation of tumour-associated antigens in colon cancer. Cancer Immunol Immunother 51:574–582

    Article  PubMed  CAS  Google Scholar 

  42. Modlin IM, Kidd M, Latich I, Zikusoka MN, Eick GN, Mane SM, Camp RL (2006) Genetic differentiation of appendiceal tumor malignancy: a guide for the perplexed. Ann Surg 244:52–60

    Article  PubMed  Google Scholar 

  43. Taupenot L, Harper KL, O‘Conner D (2003) The chromogranin-secretogranin family. NEJM 348:1134–1149

    Article  PubMed  CAS  Google Scholar 

  44. Colombo B, Curnis F, Foglieni C, Monno A, Arrigoni G, Corti A (2002) Chromogranin A expression in neoplastic cells affects tumor growth and morphogenesis in mouse models. Cancer Res 62:941–946

    PubMed  CAS  Google Scholar 

  45. Hendy GN, Li T, Girard M, Feldstein RC, Mulay S, Desjardins R, Day R, Karaplis AC, Tremblay ML, Canaff L (2006) Targeted ablation of the chromogranin A (Chga) gene: normal neuroendocrine dense core secretory granules and increased expression of other granins. Mol Endocrinol, [Epub ahead of print]

  46. Sebolt-Leopold JS, English JM (2006) Mechanisms of drug inhibition of signalling molecules. Nature 441:457–462

    Article  PubMed  CAS  Google Scholar 

  47. Wakeling AE (2005) Inhibitors of growth factor signalling. Endocr Relat Cancer 12(Suppl 1):S183–S187

    Article  PubMed  CAS  Google Scholar 

  48. Nahta R, Esteva FJ (2006) Herceptin: mechanisms of action and resistance. Cancer Lett 232:123–138

    Article  PubMed  CAS  Google Scholar 

  49. Standop J, Andrianifahanana M, Moniaux N, Schneider M, Ulrich A, Brand RE, Wisecarver JL, Bridge JA, Buchler MW, Adrian TE, Batra SK, Pour PM (2005) ErbB2 growth factor receptor, a marker for neuroendocrine cells? Pancreatology 5:44–58

    Article  PubMed  CAS  Google Scholar 

  50. Goebel SU, Iwamoto M, Raffeld M, Gibril F, Hou W, Serrano J, Jensen RT (2002) Her-2/neu expression and gene amplification in gastrinomas: correlations with tumor biology, growth, and aggressiveness. Cancer Res 62:3702–3710

    PubMed  CAS  Google Scholar 

  51. Wang DG, Johnston CF, Buchanan KD (1997) Oncogene expression in gastroenteropancreatic neuroendocrine tumors: implications for pathogenesis. Cancer 80:668–675

    Article  PubMed  CAS  Google Scholar 

  52. Pelosi G, Del Curto B, Dell’Orto P, Pasini F, Veronesi G, Spaggiari L, Maisonneuve P, Iannucci A, Terzi A, Lonardoni A, Viale G (2005) Lack of prognostic implications of HER-2/neu abnormalities in 345 stage I non-small cell carcinomas (NSCLC) and 207 stage I–III neuroendocrine tumours (NET) of the lung. Int J Cancer 113:101–108

    Article  PubMed  CAS  Google Scholar 

  53. Evers BM, Rady PL, Sandoval K, Arany I, Tyring SK, Sanchez RL, Nealon WH, Townsend CM Jr, Thompson JC (1994) Gastrinomas demonstrate amplification of the HER-2/neu proto-oncogene. Ann Surg 219:596–601

    Article  PubMed  CAS  Google Scholar 

  54. Ciardiello F (2005) Epidermal growth factor receptor inhibitors in cancer treatment. Future Oncol 1:221–234

    Article  PubMed  CAS  Google Scholar 

  55. Nilsson O, Wangberg B, Kolby L, Schultz GS, Ahlman H (1995) Expression of transforming growth factor alpha and its receptor in human neuroendocrine tumours. Int J Cancer 60:645–651

    PubMed  CAS  Google Scholar 

  56. Wulbrand U, Wied M, Zofel P, Goke B, Arnold R, Fehmann H (1998) Growth factor receptor expression in human gastroenteropancreatic neuroendocrine tumours. Eur J Clin Invest 28:1038–1049

    Article  PubMed  CAS  Google Scholar 

  57. Peghini PL, Iwamoto M, Raffeld M, Chen YJ, Goebel SU, Serrano J, Jensen RT (2002) Overexpression of epidermal growth factor and hepatocyte growth factor receptors in a proportion of gastrinomas correlates with aggressive growth and lower curability. Clin Cancer Res 8:2273–2285

    PubMed  CAS  Google Scholar 

  58. Krishnamurthy S, Dayal Y (1997) Immunohistochemical expression of transforming growth factor alpha and epidermal growth factor receptor in gastrointestinal carcinoids. Am J Surg Pathol 21:327–333

    Article  PubMed  CAS  Google Scholar 

  59. Papouchado B, Erickson LA, Rohlinger AL, Hobday TJ, Erlichman C, Ames MM, Lloyd RV (2005) Epidermal growth factor receptor and activated epidermal growth factor receptor expression in gastrointestinal carcinoids and pancreatic endocrine carcinomas. Mod Pathol 18:1329–1335

    Article  PubMed  CAS  Google Scholar 

  60. Shah T, Hochhauser D, Frow R, Quaglia A, Dhillon AP, Caplin ME (2006) Epidermal growth factor receptor expression and activation in neuroendocrine tumours. J Neuroendocrinol 18:355–360

    Article  PubMed  CAS  Google Scholar 

  61. Hopfner M, Sutter AP, Gerst B, Zeitz M, Scherubl H (2003) A novel approach in the treatment of neuroendocrine gastrointestinal tumours. Targeting the epidermal growth factor receptor by gefitinib (ZD1839). Br J Cancer 89:1766–1775

    Article  PubMed  CAS  Google Scholar 

  62. Wulbrand U, Remmert G, Zofel P, Wied M, Arnold R, Fehmann HC (2000) mRNA expression patterns of insulin-like growth factor system components in human neuroendocrine tumours. Eur J Clin Invest 30:729–739

    Article  PubMed  CAS  Google Scholar 

  63. Vikman S, Essand M, Cunningham JL, de la Torre M, Oberg K, Totterman TH, Giandomenico V (2005) Gene expression in midgut carcinoid tumors: potential targets for immunotherapy. Acta Oncol 44:32–40

    Article  PubMed  CAS  Google Scholar 

  64. Grabowski P, Griss S, Arnold CN, Horsch D, Goke R, Arnold R, Heine B, Stein H, Zeitz M, Scherubl H (2005) Nuclear survivin is a powerful novel prognostic marker in gastroenteropancreatic neuroendocrine tumor disease. Neuroendocrinology 81:1–9

    Article  PubMed  CAS  Google Scholar 

  65. Koch CA, Vortmeyer AO, Diallo R, Poremba C, Giordano TJ, Sanders D, Bornstein SR, Chrousos GP, Pacak K (2002) Survivin: a novel neuroendocrine marker for pheochromocytoma. Eur J Endocrinol 146:381–388

    Article  PubMed  CAS  Google Scholar 

  66. Gjerstorff MF, Johansen LE, Nielsen O, Kock K, Ditzel HJ (2006) Restriction of GAGE protein expression to subpopulations of cancer cells is independent of genotype and may limit the use of GAGE proteins as targets for cancer immunotherapy. Br J Cancer 94:1864–1873

    Article  PubMed  CAS  Google Scholar 

  67. Tonks NK (2003) PTP1B: from the sidelines to the front lines! FEBS Lett 546:140–148

    Article  PubMed  CAS  Google Scholar 

  68. Erickson LA, Papouchado B, Dimashkieh H, Zhang S, Nakamura N, Lloyd RV (2004) Cdx2 as a marker for neuroendocrine tumors of unknown primary sites. Endocr Pathol 15:247–252

    Article  PubMed  CAS  Google Scholar 

  69. De Lott LB, Morrison C, Suster S, Cohn DE, Frankel WL (2005) CDX2 is a useful marker of intestinal-differentiation: a tissue microarray-based study of 629 tumors from various sites. Arch Pathol Lab Med 129:1100–1105

    PubMed  Google Scholar 

  70. Uccella S, Cerutti R, Vigetti D, Furlan D, Oldrini R, Carnevali I, Pelosi G, La Rosa S, Passi A, Capella C (2006) Histidine Decarboxylase, DOPA Decarboxylase, and Vesicular Monoamine Transporter 2 Expression in Neuroendocrine Tumors: Immunohistochemical Study and Gene Expression Analysis. J Histochem Cytochem, [Epub ahead of print]

  71. Jakobsen AM, Andersson P, Saglik G, Andersson E, Kolby L, Erickson JD, Forssell-Aronsson E, Wangberg B, Ahlman H, Nilsson O (2001) Differential expression of vesicular monoamine transporter (VMAT) 1 and 2 in gastrointestinal endocrine tumours. J Pathol 195:463–472

    Article  PubMed  CAS  Google Scholar 

  72. Kidd M, Modlin IM, Mane SM, Camp RL, Eick GN, Latich I, Zikusoka MN (2006) Utility of molecular genetic signatures in the delineation of gastric neoplasia. Cancer 106:1480–1488

    Article  PubMed  CAS  Google Scholar 

  73. House MG, Schulik RD (2006) Endocrine tumors of the pancreas. Curr Opin Oncol 18:23–29

    Article  PubMed  Google Scholar 

  74. Maitra A, Hansel DE, Argani P, Ashfaq R, Rahman A, Naji A, Deng S, Geradts J, Hawthorne L, House MG, Yeo CJ (2003) Global expression analysis of well-differentiated pancreatic endocrine neoplasms using oligonucleotide microarrays. Clin Cancer Res 9:5988–5995

    PubMed  CAS  Google Scholar 

  75. Wu GJ, Wu MW, Wang SW, Liu Z, Qu P, Peng Q, Yang H, Varma VA, Sun QC, Petros JA, Lim SD, Amin MB (2001) Isolation and characterization of the major form of human MUC18 cDNA gene and correlation of MUC18 over-expression in prostate cancer cell lines and tissues with malignant progression. Gene 279:17–31

    Article  PubMed  CAS  Google Scholar 

  76. Folkman J, Merler E, Abernathy C, Williams G (1971) Isolation of a tumor factor responsible for angiogenesis. J Exp Med 133:275–288

    Article  PubMed  CAS  Google Scholar 

  77. Terris B, Scoazec JY, Rubbia L, Bregeaud L, Pepper MS, Ruszniewski P, Belghiti J, Flejou J, Degott C (1998) Expression of vascular endothelial growth factor in digestive neuroendocrine tumours. Histopathology 32:133–138

    Article  PubMed  CAS  Google Scholar 

  78. Cohen T, Herzog Y, Brodzky A, Greenson JK, Eldar S, Gluzman-Poltorak Z, Neufeld G, Resnick MB (2003) Neuropilin-2 is a novel marker expressed in pancreatic islet cells and endocrine pancreatic tumours. Hum Pathol 34:18–27

    Article  Google Scholar 

  79. Hansel DE, Rahman A, Hermans J, de Krijger RR, Ashfaq R, Yeo CJ, Cameron JL, Maitra A (2003) Liver metastases arising from well-differentiated pancreatic endocrine neoplasms demonstrate increased VEGF-C expression. Mod Pathol 16:652–659

    Article  PubMed  Google Scholar 

  80. Bloomston M, Durkin A, Yang I, Rojiani M, Rosemurgy AS, Enkmann S, Yeatman TJ, Zervos EE (2004) Identification of molecular markers specific for pancreatic neuroendocrine tumors by genetic profiling of core biopsies. Ann Surg Oncol 11:413–419

    Article  PubMed  Google Scholar 

  81. Wang J, Wu K, Zhang D, Tang H, Xie H, Hong L, Pan Y, Lan M, Hu S, Ning X, Fan D (2005) Expressions and clinical significances of angiopoietin-1, -2 and Tie2 in human gastric cancer. Biochem Biophys Res Commun 337:386–393

    Article  PubMed  CAS  Google Scholar 

  82. Takanami I (2004) Overexpression of Ang-2 mRNA in non-small cell lung cancer: association with angiogenesis and poor prognosis. Oncol Rep 12:849–853

    PubMed  CAS  Google Scholar 

  83. Eisenhofer G, Huynh T-T, Pacak K, Brouwers FM, Walther MM, Linehan WM, Munson PJ, Mannelli M, Goldstein DS, Elkahloun AG (2004) Distinct gene expression profiles in norepinephrine- and epinephrine-producing hereditary and sporadic pheochromocytomas: activation of hypoxia-driven angiogenic pathways in von Hippel-Lindau syndrome. Endocr Relat Cancer 11:897–911

    Article  PubMed  CAS  Google Scholar 

  84. Oliner J, Min H, Leal J, Yu D, Rao S, You E, Tang X, Kim H, Meyer S, Han SJ, Hawkins N, Rosenfeld R, Davy E, Graham K, Jacobsen F, Stevenson S, Ho J, Chen Q, Hartmann T, Michaels M, Kelley M, Li L, Sitney K, Martin F, Sun JR, Zhang N, Lu J, Estrada J, Kumar R, Coxon A, Kaufman S, Pretorius J, Scully S, Cattley R, Payton M, Coats S, Nguyen L, Desilva B, Ndifor A, Hayward I, Radinsky R, Boone T, Kendall R (2004) Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2. Cancer Cell 6:507–516

    Article  PubMed  CAS  Google Scholar 

  85. Hansel DE, Rahman A, House M, Ashfaq R, Berg K, Yeo CJ, Maitra A (2004) Met proto-oncogene and insulin-like growth factor binding protein 3 overexpression correlates with metastatic ability in well-differentiated pancreatic endocrine neoplasms. Clin Cancer Res 10:6152–6158

    Article  PubMed  CAS  Google Scholar 

  86. Chan AO, Kim SG, Bedeir A, Issa JP, Hamilton SR, Rashid A (2003) CpG island methylation in carcinoid and pancreatic endocrine tumors. Oncogene 13(22):924–934

    Article  CAS  Google Scholar 

  87. Leiblich A, Cross SS, Catto JW, Phillips JT, Leung HY, Hamdy FC, Rehman I (2006) Lactate dehydrogenase-B is silenced by promoter hypermethylation in human prostate cancer. Oncogene 25:2953–2960

    Article  PubMed  CAS  Google Scholar 

  88. Yee D (2006) Targeting insulin-like growth factor pathways. Br J Cancer 94:465–468

    Article  PubMed  CAS  Google Scholar 

  89. Hopfner M, Baradari V, Huether A, Schofl C, Scherubl H (2006) The insulin-like growth factor receptor 1 is a promising target for novel treatment approaches in neuroendocrine gastrointestinal tumours. Endocr Relat Cancer 13:135–149

    Article  PubMed  CAS  Google Scholar 

  90. Fottner C, Minnemann T, Kalmbach S, Weber MM (2006) Overexpression of the insulin-like growth factor I receptor in human pheochromocytomas. J Mol Endocrinol 36:279–287

    Article  PubMed  CAS  Google Scholar 

  91. Capurso G, Lattimore S, Crnogorac-Jurcevic T, Panzuto F, Milione M, Bhakta V, Campanini N, Swift SM, Bordi C, Fave GD, Lemoine NR (2006) Gene expression profiles of progressive pancreatic endocrine tumours and their liver metastases reveal potential novel markers and therapeutic targets. Endocr Relat Cancer 13:541–558

    Article  PubMed  CAS  Google Scholar 

  92. Maulik G, Shrikhande A, Kijima T, Ma PC, Morrison PT, Salgia R (2002) Role of the hepatocyte growth factor receptor, c-Met, in oncogenesis and potential for therapeutic inhibition. Cytokine Growth Factor Rev 13:41–59

    Article  PubMed  CAS  Google Scholar 

  93. Chong S, Lee KS, Chung MJ, Han J, Kwon OJ, Kim TS (2006) Neuroendocrine tumors of the lung: clinical, pathologic, and imaging findings. Radiographics. 26:41–57

    PubMed  Google Scholar 

  94. Asamura H, Kameya T, Matsuno Y, Noguchi M, Tada H, Ishikawa Y, Yokose T, Jiang SX, Inoue T, Nakagawa K, Tajima K, Nagai K (2006) Neuroendocrine neoplasms of the lung: a prognostic spectrum. J Clin Oncol 24:70–76

    Article  PubMed  Google Scholar 

  95. He P, Varticovski L, Bowman ED, Fukuoka J, Welsh JA, Miura K, Jen J, Gabrielson E, Brambilla E, Travis WD, Harris CC (2004) Identification of carboxypeptidase E and gamma-glutamyl hydrolase as biomarkers for pulmonary neuroendocrine tumors by cDNA microarray. Hum Pathol 35:1196–1209

    Article  PubMed  CAS  Google Scholar 

  96. Fan X, Olson SJ, Blevins LS, Allen GS, Johnson MD (2002) Immunohistochemical localization of carboxypeptidases D, E, and Z in pituitary adenomas and normal human pituitary. J Histochem Cytochem 50:1509–1516

    PubMed  CAS  Google Scholar 

  97. Jakobsen AM, Ahlman H, Kolby L, Abrahamsson J, Fischer-Colbrie R, Nilsson O (2003) NESP55, a novel chromogranin-like peptide, is expressed in endocrine tumours of the pancreas and adrenal medulla but not in ileal carcinoids. Br J Cancer 88:1746–1754

    Article  PubMed  CAS  Google Scholar 

  98. Srivastava A, Padilla O, Fischer-Colbrie R, Tischler AS, Dayal Y (2004) Neuroendocrine secretory protein-55 (NESP-55) expression discriminates pancreatic endocrine tumors and pheochromocytomas from gastrointestinal and pulmonary carcinoids. Am J Surg Pathol 28:1371–1378

    PubMed  Google Scholar 

  99. Wang XC, Xu SY, Wu XY, Song HD, Mao YF, Fan HY, Yu F, Mou B, Gu YY, Xu LQ, Zhou XO, Chen Z, Chen JL, Hu RM (2004) Gene expression profiling in human insulinoma tissue: genes involved in the insulin secretion pathway and cloning of novel full-length cDNAs. Endocr Relat Cancer 11:295–303

    Article  PubMed  CAS  Google Scholar 

  100. Lyons J, Landis CA, Harsh G, Vallar L, Grunewald K, Feichtinger H, Duh QY, Clark OH, Kawasaki E, Bourne HR, et al (1990) Two G protein oncogenes in human endocrine tumors. Science 249:655–659

    Article  PubMed  CAS  Google Scholar 

  101. Jones MH, Virtanen C, Honjoh D, Miyoshi T, Satoh Y, Okumura S, Nakagawa K, Nomura H, Ishikawa Y (2004) Two prognostically significant subtypes of high-grade lung neuroendocrine tumours independent of small-cell and large-cell neuroendocrine carcinomas identified by gene expression profiles. Lancet 363:775–781

    Article  PubMed  CAS  Google Scholar 

  102. Ezzat S, Asa SL (2005) The molecular pathogenetic role of cell adhesion in endocrine neoplasia. J Clin Pathol. 58:1121–1125

    Article  PubMed  CAS  Google Scholar 

  103. DeGregori J (2002) The genetics of the E2F family of transcription factors: shared functions and unique roles. Biochim Biophys Acta 1602:131–150

    PubMed  CAS  Google Scholar 

  104. Nitadori J, Ishii G, Tsuta K, Yokose T, Murata Y, Kodama T, Nagai K, Kato H, Ochiai A (2006) Immunohistochemical differential diagnosis between large cell neuroendocrine carcinoma and small cell carcinoma by tissue microarray analysis with a large antibody panel. Am J Clin Pathol 125:682–692

    Article  PubMed  Google Scholar 

  105. Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M, Loda M, Weber G, Mark EJ, Lander ES, Wong W, Johnson BE, Golub TR, Sugarbaker DJ, Meyerson M (2001) Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA 98:13790–13795

    Article  PubMed  CAS  Google Scholar 

  106. Shida T, Furuya M, Nikaido T, Kishimoto T, Koda K, Oda K, Nakatani Y, Miyazaki M, Ishikura H (2005) Aberrant expression of human achaete-scute homologue gene 1 in the gastrointestinal neuroendocrine carcinomas. Clin Cancer Res 15(11):450–458

    Google Scholar 

  107. Pedersen N, Mortensen S, Sorensen SB, Pedersen MW, Rieneck K, Bovin LF, Poulsen HS (2003) Transcriptional gene expression profiling of small cell lung cancer cells. Cancer Res 63:1943–1953

    PubMed  CAS  Google Scholar 

  108. Pedersen N, Pedersen MW, Lan MS, Breslin MB, Poulsen HS (2006) The insulinoma-associated 1: a novel promoter for targeted cancer gene therapy for small-cell lung cancer. Cancer Gene Ther 13:375–384

    Article  PubMed  CAS  Google Scholar 

  109. Zaffaroni N, Villa R, Pastorino U, Cirincione R, Incarbone M, Alloisio M, Curto M, Pilotti S, Daidone MG (2005) Lack of telomerase activity in lung carcinoids is dependent on human telomerase reverse transcriptase transcription and alternative splicing and is associated with long telomeres. Clin Cancer Res 11:2832–2839

    Article  PubMed  CAS  Google Scholar 

  110. Au NH, Gown AM, Cheang M, Huntsman D, Yorida E, Elliott WM, Flint J, English J, Gilks CB, Grimes HL (2004) P63 expression in lung carcinoma: a tissue microarray study of 408 cases. Appl Immunohistochem Mol Morphol 12:240–247

    PubMed  CAS  Google Scholar 

  111. Cho NH, Koh ES, Lee DW, Kim H, Choi YP, Cho SH, Kim DS (2006) Comparative proteomics of pulmonary tumors with neuroendocrine differentiation. J Proteome Res 5:643–650

    Article  PubMed  CAS  Google Scholar 

  112. Tinker AV, Boussioutas A, Bowtell DD (2006) The challenges of gene expression microarrays for the study of human cancer. Cancer Cell 9:333–339

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Hofsli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofsli, E. Genes involved in neuroendocrine tumor biology. Pituitary 9, 165–178 (2006). https://doi.org/10.1007/s11102-006-0262-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-006-0262-5

Keywords

Navigation