Advertisement

Pituitary

, Volume 8, Issue 1, pp 7–15 | Cite as

Pathogenesis of Prolactinomas

  • Anna SpadaEmail author
  • Giovanna Mantovani
  • Andrea Lania
Article

Abstract

In recent years the demonstration that human pituitary adenomas are monoclonal in origin provides further evidence that pituitary neoplasia arise from the replication of a single mutated cell in which growth advantage results from either activation of proto-oncogenes or inactivation of tumor suppressor genes. However, with the exception of one RAS mutation identified in a single unusually aggressive prolactinoma resistant to dopaminergic inhibition that resulted to be lethal, no mutational changes have been so far detected in prolactinomas. In the absence of genetic changes, modifications in the level of expression of oncogenes or tumor suppressor genes have been detected in these tumors, although it is unknown whether these changes have a causative role or are a secondary event. Indeed, our knowledge on the molecular events involved in lactotroph proliferation is even more limited in comparison to the other tumor types, since these tumors are very infrequently surgically removed and therefore available for molecular biology studies. In this respec, it is worth noting that the molecular and biological abnormalities so far described in prolactinomas mainly concern aggressive and atypical tumors and likely do not apply to the typical prolactinomas, that are characterized by good response to medical treatment and a very low growth rate.

Key Words

D2 receptor PRL-omas growth factors oncogenes tumor suppressor genes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shimon I, Melmed S. Genetic basis of endocrine disease:pituitary tumour pathogenesis. J Clin Endocrinol Metab 1997;82:1675–1681.CrossRefPubMedGoogle Scholar
  2. 2.
    Farrel WE, Clayton RN. Molecular pathogenesis of pituitary tumors. Front Neuroendocrinol 2000;21:174–198.CrossRefGoogle Scholar
  3. 3.
    Lania A, Mantovani G, Spada A. Genetics of pituitary tumors: Focus on G-protein mutations. Exp Biol Med (Maywood) 2003;228:1004–1017.Google Scholar
  4. 4.
    Asa SL, Ezzat S. The pathogenesis of pituitary tumours. Nature Reviews 2002;2:836–849.PubMedCrossRefGoogle Scholar
  5. 5.
    Alexander JM, Biller BMK, Bikkal H, Zervas NT, Arnold A, Klibanski A. Clinically non functioning pituitary adenomas are monoclonal in origin. J Clin Invest 1990;86:336–340.PubMedCrossRefGoogle Scholar
  6. 6.
    Herman V, Fagin J, Gonsky R, Kovacs K, Melmed S. Clonal Origin of pituitary adenomas. J Clin Endocrinol Metab 1990;71:1427–1433.PubMedCrossRefGoogle Scholar
  7. 7.
    Vallar L. Spada A, Giannattasio G. Altered Gs and adenylate cyclase activity in human GH-secreting pituitary adenomas. Nature 1987;330:566–567.CrossRefPubMedGoogle Scholar
  8. 8.
    Landis C, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L. GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 1989;340:692–696.CrossRefPubMedGoogle Scholar
  9. 9.
    Burrow GN, Wortzman G, Rewcastle NB, Hodgate RC, Kovacs K. Microadenomas of the pituitary and abnormal sella tomograms in an unselected autopsy series. N Engl J Med 1981;304:156–158.PubMedCrossRefGoogle Scholar
  10. 10.
    Elster AD. Modern imaging of the pituitary. Radiology 1993;187:1–14.PubMedGoogle Scholar
  11. 11.
    Karga HJ, Alexander JM, Hedley-Whyte ET, Klibanski A, Jameson JL. Ras mutations in human pituitary tumors. J Clin Endocrinol Metab 1992;74:914–919.CrossRefPubMedGoogle Scholar
  12. 12.
    Cai WY, Alexander JM, Hedley-Whyte ET, Scheithauer BW, Jameson JL, Zervas NT, Klibanski A. Ras mutations in human prolactinomas and pituitary carcinomas. J Clin Endocrinol Metab 1994;78:89–93.CrossRefPubMedGoogle Scholar
  13. 13.
    Pei L, Melmed S, Scheithauer B, Kovacs K, Prager D. H-ras mutations in human pituitary carcinoma metastasis. J Clin Endocrinol Metab 1994;78:842–846.CrossRefPubMedGoogle Scholar
  14. 14.
    Dong Q, Brucker-Davis F, Weintraub BD, Smallridge RC, Carr FE, Battey J, Spiegel AM, Shenker A. Screening of candidate oncogenes in human thyrotroph tumors: absence of activating mutations of the G alpha q, G alpha 11, G alpha s, or thyrotropin-releasing hormone receptor genes. J Clin Endocrinol Metab 1996;81:1134–1140.CrossRefPubMedGoogle Scholar
  15. 15.
    Farrell WE, Talbot JA, Bicknell EJ, Simpson D, Clayton RN. Genomic sequence analysis of a key residue (Arg183) in human G alpha q in invasive non-functional pituitary adenomas. Clin Endocrinol (Oxf) 1997;47:241–244.CrossRefGoogle Scholar
  16. 16.
    Vallar L, Spada A, Giannattasio G. Altered Gs and adenylate cyclase activity in human GH-secreting pituitary adenomas. Nature 1987;330:566–567.CrossRefPubMedGoogle Scholar
  17. 17.
    Landis C, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L. GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 1989;340:692–696.CrossRefPubMedGoogle Scholar
  18. 18.
    McAndrew J, Paterson AJ, Asa SL, McCarthy KJ, Kudlow JE. Targeting of transforming growth factor-alpha expression to pituitary lactotrophs in transgenic mice results in selective lactotroph proliferation and adenomas. Endocrinology 1995;136:4479–4488.CrossRefPubMedGoogle Scholar
  19. 19.
    Oomizu S, Honda J, Takeuchi S, Kakeya T, Masui T, Takahashi S. Transforming growth factor-alpha stimulates proliferation of mammotrophs and corticotrophs in the mouse pituitary. J Endocrinol 2000;165:493–501.CrossRefPubMedGoogle Scholar
  20. 20.
    Ezzat S, Walpola IA, Ramyar L, Smyth HS, Asa SL. Membrane-anchored expression of transforming growth factor-alpha in human pituitary adenoma cells. J Clin Endocrinol Metab 1995;80:534–539.PubMedCrossRefGoogle Scholar
  21. 21.
    LeRiche VK, Asa SL, Ezzat S. Epidermal growth factor and its receptor (EGF-R) in human pituitary adenomas: EGF-R correlates with tumor aggressiveness. J Clin Endocrinol Metab 1996;81:656–662.CrossRefPubMedGoogle Scholar
  22. 22.
    Pei L, Melmed S. Isolation and characterization of a pituitary tumor-transforming gene (PTTG). Mol Endocrinol 1997;11:433–441.CrossRefPubMedGoogle Scholar
  23. 23.
    Chen LL, Puri R, Lefkowitz EJ, Kakar SS. Identification of the human pituitary tumor transforming gene (HPTTG) family: molecular structure, expression, and chromosomal localization. Gene 2000;246:41–50.CrossRefGoogle Scholar
  24. 24.
    Missale C, Boroni F, Sigala S, Buriani A, Fabris M, Leon A, Dal Toso R, Spano P. Nerve growth factor in the anterior pituitary: localization in mammotroph cells and cosecretion with prolactin by a dopamine-regulated mechanism. Proc Natl Acad Sci U S A 1996;93:4240–4245.CrossRefPubMedGoogle Scholar
  25. 25.
    Sigala S, Martocchia A, Missale C, Falaschi P, Spano P. Increased serum concentration of nerve growth factor in patients with microprolactinoma. Neuropeptides 2004;38:21–24.CrossRefPubMedGoogle Scholar
  26. 26.
    Missale C, Losa M, Sigala S, Balsari A, Giovanelli M, Spano PF. Nerve growth factor controls proliferation and progression of human prolactinoma cell lines through an autocrine mechanism. Mol Endocrinol 1996;10(3):272–285.CrossRefPubMedGoogle Scholar
  27. 27.
    Fiorentini C, Guerra N, Facchetti M, Finardi A, Tiberio L, Schiaffonati L, Spano P, Missale C. Nerve growth factor regulates dopamine D(2) receptor expression in prolactinoma cell lines via p75(NGFR)-mediated activation of nuclear factor-kappaB. Mol Endocrinol 2002;16:353–366.CrossRefPubMedGoogle Scholar
  28. 28.
    Ezzat S, Zheng L, Zhu XF, Wu GE, Asa SL. Targeted expression of a human pituitary tumor-derived isoform of FGF receptor-4 recapitulates pituitary tumorigenesis. J Clin Invest 2002;109:69–78.CrossRefPubMedGoogle Scholar
  29. 29.
    Ezzat S, Zheng L, Asa SL. Pituitary tumor-derived fibroblast growth factor receptor 4 isoform disrupts neural cell-adhesion molecule/N-cadherin signaling to diminish cell adhesiveness: a mechanism underlying pituitary neoplasia. Mol Endocrinol 2004;18:2543–2552.CrossRefPubMedGoogle Scholar
  30. 30.
    Cavallaro U, Niedermeyer J, Fuxa M, Christofori G. N-CAM modulates tumour-cell adhesion to matrix by inducing FGF-receptor signalling. Nat Cell Biol 2001;3:650–657.CrossRefPubMedGoogle Scholar
  31. 31.
    Raghavan R, Harrison D, James RA, Daniels M, Birch P, Caldwell GI, Kendall-Taylor P. Oncoprotein immunoreactivity in human pituitary tumours. Clin Endocrinol 1994;40:117–126.CrossRefGoogle Scholar
  32. 32.
    Woloshak M, Roberts JL, Post K. c-myc, c-fos and c-myb gene expression in human pituitary adenomas. J Clin Endocrinol Metab 1994;79:253–257.CrossRefGoogle Scholar
  33. 33.
    Jordan S, Lidhar K, Karbonits M, Lowe DG, Grossman AB. Cyclin D and cyclin E expression in normal and adenomatous pituitary. Eur J Endocrinol 2000;143:R1-6.CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang X, Horwitz GA, Heaney AP, Nakashima M, Prezant TR, Bronstein MD, Melmed S. Pituitary tumor transforming gene (PTTG) expression in pituitary adenomas. J Clin Endocrinol Metab 1999;84:761–767.PubMedCrossRefGoogle Scholar
  35. 35.
    Zhang X, Horwitz GA, Prezant TR, Valentini A, Nakashima M, Bronstein MD, Melmed S. Structure, expression, and function of human pituitary tumor-transforming gene (PTTG). Mol Endocrinology 1999;13:156–166.CrossRefGoogle Scholar
  36. 36.
    Gregory AH, Irina M, Anthony PH, Song-Guang R, Shlomo M. Human pituitary tumor-transforming gene (PTTG1) motif suppresses prolactin expression. Mol Endocrinol 2003;17:600–609.CrossRefGoogle Scholar
  37. 37.
    Pei L, Melmed S. Isolation and characterization of a pituitary tumor-transforming gene (PTTG). Mol Endocrinol 1997;11:433–441.CrossRefPubMedGoogle Scholar
  38. 38.
    Prezant TP, Kadioglu P, Melmed S. An intronless homolog of human proto-oncogene hPTTG is expressed in pituitary tumors: Evidence for hPTTG family. J Clin Endocrinol Metab 1999;84:1149–1152.CrossRefPubMedGoogle Scholar
  39. 39.
    Heaney AP, Singson R, McCabe CJ, Nelson V, Nakashima M, Melmed S. Pituitary tumor transforming gene in colorectal tumors. Lancet 2000;355:712–715.CrossRefGoogle Scholar
  40. 40.
    Dominguez A, Ramos-Morales F, Romero F, Rios RM, Dreyfus F, Tortolero M, Pinto-Toro JA. hPTTG, a human homologue of rat pttg, is overexpressed in hematopoietic neoplasms. Evidence for a transcriptional activation function of hPTTG. Oncogene 1998;17:2187–2193.PubMedCrossRefGoogle Scholar
  41. 41.
    Zou H, McGarry TJ, Bernal T, Kirschner MW. Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science 1999;285:418–422.CrossRefPubMedGoogle Scholar
  42. 42.
    Zhou Y, Mehta KR, Choi AP, Scolavino S, Zhang X. DNA damage-induced inhibition of securin expression is mediated by p53. J Biol Chem 2003;278:462–470.PubMedCrossRefGoogle Scholar
  43. 43.
    Wang Z, Melmed S. Pituitary tumor transforming gene (PTTG) transforming and transactivation activity. J Biol Chem 2000;275:7459–7461.PubMedCrossRefGoogle Scholar
  44. 44.
    Yu R, Lu W, Chen J, McCabe CJ, Melmed S. Overexpressed pituitary tumor-transforming gene causes aneuploidy in live human cells. Endocrinology 2003;144:4991–4998.CrossRefPubMedGoogle Scholar
  45. 45.
    Heaney AP, Horwitz GA, Wang Z, Singson R, Melmed S. Early involvement of estrogen-induced pituitary tumor transforming gene and fibroblast growth factor expression in prolactinoma pathogenesis. Nat Med 1999;5:1317–1321.PubMedCrossRefGoogle Scholar
  46. 46.
    Yu R, Ren S-G, Horwitz GA, Wang Z, Melmed S. Pituitary tumor transforming gene (PTTG) regulates placental JEG-3 cell division and survival: evidence from live cell imaging. Mol Endocrinol 2000;14:1137–1146.CrossRefPubMedGoogle Scholar
  47. 47.
    Gothard LQ, Hibbard JC, Seyfred MA. Estrogen-mediated induction of rat prolactin gene transcription requires the formation of a chromatin loop between the distal enhancer and proximal promoter regions. Mol Endocrinol 1996;10:185–195.CrossRefPubMedGoogle Scholar
  48. 48.
    Scully KM, Gleiberman AS, Lindzey J, Lubahn DB, Korach KS, Rosenfeld MG. Role of estrogen receptor-alpha in the anterior pituitary gland. Mol Endocrinol 1997;11:674–681.CrossRefPubMedGoogle Scholar
  49. 49.
    Serri O, Noiseux D, Robert F, Hardy J. Lactotroph hyperplasia in an estrogen treated male-to-female transsexual patient. J Clin Endocrinol Metab 1996;81:3177–3179.CrossRefPubMedGoogle Scholar
  50. 50.
    Baird A, Mormede P, Ying SY, Wehrenberg WB, Ueno N, Ling N, Guillemin RA. Nonmitogenic pituitary function of fibroblast growth factor: regulation of thyrotropin and prolactin secretion. Proc Natl Acad Sci USA 1985;82:5545–5549.PubMedCrossRefGoogle Scholar
  51. 51.
    Smallwood PM, Munoz-Sanjuan I, Tong P, Macke JP, Hendry SH, Gilbert DJ, Copeland NG, Jenkins NA, Nathans J. Fibroblast growth factor (FGF) homologous factors: new members of the FGF family implicated in nervous system development. Proc Natl Acad Sci U S A. 1996;93:9850–9857.CrossRefPubMedGoogle Scholar
  52. 52.
    Li Y, Koga M, Kasayama S, Matsumoto K, Arita N, Hayakawa T, Sato B. Identification and characterization of high molecular weight forms of basic fibroblast growth factor in human pituitary adenomas. J Clin Endocrinol Metab 1992;75:1436–1441.PubMedCrossRefGoogle Scholar
  53. 53.
    Zimering MB, Katsumata N, Sato Y, Brandi ML, Aurbach GD, Marx SJ, Friesen HG. Increased basic fibroblast growth factor in plasma from multiple endocrine neoplasia type 1: relation to pituitary tumor. J Clin Endocrinol Metab 1993;76:1182–1187.CrossRefPubMedGoogle Scholar
  54. 54.
    Horwitz GA, Miklovsky I, Heaney AP, Ren SG, Melmed S. Human pituitary tumor-transforming gene (PTTG1) motif suppresses prolactin expression. Mol Endocrinol 2003;17:600–609.CrossRefPubMedGoogle Scholar
  55. 55.
    Fedele M, Battista S, Kenyon L, Baldassarre G, Fidanza V, Klein-Szanto AJ, Parlow AF, Visone R, Pierantoni GM, Outwater E, Santoro M, Croce CM, Fusco A. Overexpression of the HMGA2 gene in transgenic mice leads to the onset of pituitary adenomas. Oncogene 2002;21:3190–3198.CrossRefPubMedGoogle Scholar
  56. 56.
    Finelli P, Pierantoni GM, Giardino D, Losa M, Rodeschini O, Fedele M, Valtorta E, Mortini P, Croce CM, Larizza L, Fusco A. The High Mobility Group A2 gene is amplified and overexpressed in human prolactinomas. Cancer Res 2002;62:2398–2405.PubMedGoogle Scholar
  57. 57.
    Faccenda E, Melmed S, Bevan JS, Eidne KA. Structure of the thyrotrophin-releasing hormone receptor in human pituitary adenomas. Clin Endocrinol (Oxf) 1996;44:341–347.CrossRefGoogle Scholar
  58. 58.
    de Keyzer Y, Rene P, Beldjord C, Lenne F, Bertagna X. Overexpression of vasopressin (V3) and corticotrophin-releasing hormone receptor genes in corticotroph tumours. Clin Endocrinol (Oxf) 1998;49:475–482.CrossRefGoogle Scholar
  59. 59.
    Kaji H, Xu Y, Takahashi Y, Abe H, Tamaki N, Chihara K. Human TRH receptor messenger ribonucleic acid levels in normal and adenomatous pituitary: analysis by the competitive reverse transcription polymerase chain reaction method. Clin Endocrinol (Oxf) 1995;42:243–248.CrossRefGoogle Scholar
  60. 60.
    Spada A, Reza-Elahi F, Lania A. TRH raises cytosolic Ca2+ in human adenomatous lactotrophs. J Endocrinol Invest 1990;13:13–18.PubMedGoogle Scholar
  61. 61.
    Chaidarun SS, Klibanski A, Alexander JM. Tumor-specific expression of alternatively spliced estrogen receptor messenger ribonucleic acid variants in human pituitary adenomas. J Clin Endocrinol Metab 1997;82:1058–1065.CrossRefPubMedGoogle Scholar
  62. 62.
    Knudson AG. Mutations and cancer: Statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971;68:829–823.Google Scholar
  63. 63.
    Tucker T, Friedman JM. Pathogenesis of hereditary tumors: beyond the “two-hit” hypothesis. Clin Genet 2002;62:345–57.CrossRefPubMedGoogle Scholar
  64. 64.
    Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA. Effects of an Rb mutation in the mouse. Nature 1992;359:295–300.CrossRefPubMedGoogle Scholar
  65. 65.
    Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N, Horii I, Loh DY, Nakayama K. Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 1996;85:707–720.CrossRefPubMedGoogle Scholar
  66. 66.
    Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E, Polyak K, Tsai LH, Broudy V, Perlmutter RM, Kaushansky K, Roberts JM. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell 1996;85:733–744.CrossRefPubMedGoogle Scholar
  67. 67.
    Pei L, Melmed S, Scheithauer B, Kovacs K, Benedict WE, Prager D. Frequent loss of heterozygosity at the retinoblastoma susceptibility gene (RB) locus in aggressive pituitary tumors. Evidence for a chromosome 13 tumor suppressor gene other than RB. Cancer Res 1995;55:644–646.Google Scholar
  68. 68.
    Simpson DJ, Magnay J, Bicknell JE, Barkan AL, McNicol AM, Clayton RN, Farrel WE. Chromosome 13q deletion mapping in pituitary tumors: Infrequent loss of the retinoblastoma susceptibility gene (RB1) despite loss of RB1 product in somatotropinomas. Cancer Res 1999;59:1562–1566.PubMedGoogle Scholar
  69. 69.
    Bamberger CM, Fehn M, Bamberger AM, Ludecke DK, Beil FU, Saeger W, Schulte HM. Reduced expression levels of the cell-cycle inhibitor p27Kip1 in human pituitary adenomas. Eur J Endocrinol 1999;140:250–255.CrossRefPubMedGoogle Scholar
  70. 70.
    Dahia PL, Aguiar RC, Honegger J, Fahlbush R, Jordan S, Lowe DG, Lu X, Clayton RN, Besser GM, Grossman AB. Mutation and expression analysis of the p27/kip1 gene in corticotrophin-secreting tumours. Oncogene 1998;16:69–76.PubMedCrossRefGoogle Scholar
  71. 71.
    Jaffrain-Rea ML, Ferretti E, Toniato E, Cannita K, Santoro A, Di Stefano D, Ricevuto E, Maroder M, Tamburrano G, Cantore G, Gulino A, Martinotti S. p16 (INK4a, MTS-1) gene polymorphism and methylation status in human pituitary tumours. Clin Endocrinol (Oxf) 1999;51:317–325.CrossRefGoogle Scholar
  72. 72.
    Simpson DJ, Bicknell JE, McNicol AM, Clayton RN, Farrell WE. Hypermethylation of the p16/CDKN2A/MTSI gene and loss of protein expression is associated with nonfunctional pituitary adenomas but not somatotrophinomas. Genes Chromosomes Cancer 1999;24:328–336.CrossRefPubMedGoogle Scholar
  73. 73.
    Levy A, Hall L, Yeudall WA, Lightman SL. p53 gene mutations in pituitary adenomas: rare events. Clin Endocrinol 1994;41:809–814.CrossRefGoogle Scholar
  74. 74.
    Herman V, Drazin NZ, Gonsky R, Melmed S. Molecular screening of pituitary adenomas for gene mutations and rearrangements. J Clin Endocrinol Metab 1993;77:50–55.CrossRefPubMedGoogle Scholar
  75. 75.
    Buckley N, Bates AS, Broome JC, Strange RC, Perrett CW, Burke CW, Clayton RN. p53 Protein accumulates in Cushings adenomas and invasive non-functional adenomas. J Clin Endocrinol Metab 1994;79:1513–1516.CrossRefPubMedGoogle Scholar
  76. 76.
    Facchetti M, Uberti D, Memo M, Missale C. Nerve growth factor restores p53 function in pituitary tumor cell lines via trkA-mediated activation of phosphatidylinositol 3-kinase. Mol Endocrinol 2004;18:162–172.PubMedCrossRefGoogle Scholar
  77. 77.
    Pannett AA, Thakker RV. Multiple endocrine neoplasia type 1. Endocr Relat Cancer 1999;6:449–473.CrossRefPubMedGoogle Scholar
  78. 78.
    Chandrasekharappa SC, Guru SC, Manickam P, Olufemi SE, Collins FS, Emmert-Buck MR, Debelenko LV, Zhuang Z, Lubensky IA, Liotta LA, Crabtree JS, Wang Y, Roe BA, Weisemann J, Boguski MS, Agarwal SK, Kester MB, Kim YS, Heppner C, Dong Q, Spiegel AM, Burns AL, Marx SJ. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 1997;276:404–407.CrossRefPubMedGoogle Scholar
  79. 79.
    Crabtree JS, Scacheri PC, Ward JM, Garrett-Beal L, Emmert-Buck MR, Edgemon KA, Lorang D, Libutti SK, Chandrasekharappa SC, Marx SJ, Spiegel AM, Collins FS. A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors. Proc Natl Acad Sci U S A. 2001;98:1118–1123.CrossRefPubMedGoogle Scholar
  80. 80.
    Crabtree JS, Scacheri PC, Ward JM, McNally SR, Swain GP, Montagna C, Hager JH, Hanahan D, Edlund H, Magnuson MA, Garrett-Beal L, Burns AL, Ried T, Chandrasekharappa SC, Marx SJ, Spiegel AM, Collins FS. Of mice and MEN1: Insulinomas in a conditional mouse knockout. Mol Cell Biol 2003;23:6075–6085.CrossRefPubMedGoogle Scholar
  81. 81.
    Libutti SK, Crabtree JS, Lorang D, Burns AL, Mazzanti C, Hewitt SM, O’Connor S, Ward JM, Emmert-Buck MR, Remaley A, Miller M, Turner E, Alexander HR, Arnold A, Marx SJ, Collins FS, Spiegel AM. Parathyroid gland-specific deletion of the mouse Men1 gene results in parathyroid neoplasia and hypercalcemic hyperparathyroidism. Cancer Res 2003;63:8022–8028.PubMedGoogle Scholar
  82. 82.
    Bertolino P, Tong WM, Galendo D, Wang ZQ, Zhang CX. Heterozygous Men1 mutant mice develop a range of endocrine tumors mimicking multiple endocrine neoplasia type 1. Mol Endocrinol 2003;17:1880–1892.CrossRefPubMedGoogle Scholar
  83. 83.
    Bertolino P, Tong WM, Herrera PL, Casse H, Zhang CX, Wang ZQ. Pancreatic beta-cell-specific ablation of the multiple endocrine neoplasia type 1 (MEN1) gene causes full penetrance of insulinoma development in mice. Cancer Res 2003;15(63):4836–4841.Google Scholar
  84. 84.
    Kaji H, Canaff L, Lebrun JJ, Goltzman D, Hendy GN. Inactivation of menin, a Smad3-interacting protein, blocks transforming growth factor type beta signaling. Proc Natl Acad Sci U S A. 2001;98:3837–3842.CrossRefPubMedGoogle Scholar
  85. 85.
    Weil RJ, Vortmeyer AO, Huang S, Boni R, Lubensky IA, Pack S, Marx SJ, Zhuang Z, Oldfield EH. 11q13 allelic loss in pituitary tumors in patients with multiple endocrine neoplasia syndrome type 1. Clin Cancer Res 1998;4:1673–1678.PubMedGoogle Scholar
  86. 86.
    Zhuang Z, Ezzat SZ, Vortmeyer AO, Weil R, Oldfield EH, Park WS, Pack S, Huang S, Agarwal SK, Guru SC, Manickam P, Debelenko LV, Kester MB, Olufemi SE, Heppner C, Crabtree JS, Burns AL, Spiegel AM, Marx SJ, Chandrasekharappa SC, Collins FS, Emmert-Buck MR, Liotta LA, Asa SL, Lubensky IA. Mutations of the MEN1 tumor suppressor gene in pituitary tumors. Cancer Res 1997;57:5446–5451.PubMedGoogle Scholar
  87. 87.
    Tanaka C, Kimura T, Yang P, Moritani M, Yamaoka T, Yamada S, Sano T, Yoshimoto K, Itakura M. Analysis of loss of heterozygosity on chromosome 11 and infrequent inactivation of the MEN-1 gene in sporadic pituitary adenomas. J Clin Endocrinol Metab 1998;83:2631–2634.PubMedCrossRefGoogle Scholar
  88. 88.
    Poncin J, Stevenaert A, Beckers A. Somatic MEN-I gene mutations did not contribute significantly in sporadic pituitary tumorigenesis. Eur J Endocrinol 1999;140:573–576.PubMedCrossRefGoogle Scholar
  89. 89.
    Wenbin C, Asai A, Teramoto A, Sanno N, Kirino T. Mutations of the MEN-I tumor suppressor gene in sporadic pituitary tumors. Cancer Letters 1999;74:43–47.CrossRefGoogle Scholar
  90. 90.
    Scheithauer BW, Laws ER Jr, Kovacs K, Horvath E, Randall RV, Carney JA. Pituitary adenomas of the multiple endocrine neoplasia type I syndrome. Semin Diagn Pathol 1987;4:205–211.PubMedGoogle Scholar
  91. 91.
    O’Brien T, O’Riordan DS, Gharib H, Scheithauer BW, Ebersold MJ, van Heerden JA. Results of treatment of pituitary disease in multiple endocrine neoplasia, type I. Neurosurgery 1996;39:273–278.PubMedCrossRefGoogle Scholar
  92. 92.
    Vasen HF, Lamers CB, Lips CJ. Screening for the multiple endocrine neoplasia syndrome type I. A study of 11 kindreds in The Netherlands. Arch Intern Med 1989;149:2717–2722.CrossRefPubMedGoogle Scholar
  93. 93.
    Burgess JR, Shepherd JJ, Parameswaran V, Hoffman L, Greenaway TM. Prolactinomas in a large kindred with multiple endocrine neoplasia type 1: clinical features and inheritance pattern. J Clin Endocrinol Metab 1996;8:1841–1845.CrossRefGoogle Scholar
  94. 94.
    Carty SE, Helm AK, Amico JA, Clarke MR, Foley TP, Watson CG, Mulvihill JJ. The variable penetrance and spectrum of manifestations of multiple endocrine neoplasia type 1. Surgery 1998;124:1106–1113.CrossRefPubMedGoogle Scholar
  95. 95.
    Verges B, Boureille F, Goudet P, Murat A, Beckers A, Sassolas G, Cougard P, Chambe B, Montvernay C, Calender A. Pituitary disease in MEN type 1 (MEN1): data from the France-Belgium MEN1 multicenter study. J Clin Endocrinol Metab 2002;87:457–465.CrossRefPubMedGoogle Scholar
  96. 96.
    Kelly MA, Rubinstein M, Asa SL, Zhang G, Saez C, Bunzow JR, Allen RG, Hnasko R, Ben-Jonathan N, Grandy DK, Low MJ. Pituitary lactotroph hyperplasia and chronic hyperprolactinemia in dopamine D2 receptor-deficient mice. Neuron 1997;19:103–113.CrossRefPubMedGoogle Scholar
  97. 97.
    Asa SL, Kelly MA, Grandy DK, Low MJ. Pituitary lactotroph adenomas develop after prolonged lactotroph hyperplasia in dopamine D2 receptor-deficient mice. Endocrinology 1999;140:5348–5355.CrossRefPubMedGoogle Scholar
  98. 98.
    Friedman E, Adams EF, Hoog A, Gejman PV, Carson E, Larsson C, De Marco L, Werner S, Fahlbusch R, Nordenskjold M. Normal structural dopamine type 2 receptor gene in prolactin-secreting and other pituitary tumors. J Clin Endocrinol Metab 1994;78:568–574.PubMedCrossRefGoogle Scholar
  99. 99.
    Noble EP.D2 dopamine receptor gene in psychiatric and neurologic disorders and its phenotypes. Am J Med Genet B Neuropsychiatr Genet 2003;116:103–125.PubMedCrossRefGoogle Scholar
  100. 100.
    Jönsson EG, Nöthen MM, Grünhage F, Farde L, Nakashima Y, Propping P, Sedvall GC. Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of health volunteers. Mol Psychiatry 1999;4:290–296.PubMedCrossRefGoogle Scholar
  101. 101.
    Caccavelli L, Feron F, Morange I, Rouer E, Benarous R, Dewailly D, Jaquet P, Kordon C, Enjalbert A. Decreased expression of the two D2 dopamine receptor isoforms in bromocriptine-resistant prolactinomas. Neuroendocrinology 1994;60:314–322.PubMedCrossRefGoogle Scholar
  102. 102.
    Winkelmann J, Pagotto U, Theodoropoulou M, Tatsch K, Saeger W, Muller A, Arzberger T, Schaaf L, Schumann EM, Trenkwalder C, Stalla GK. Retention of dopamine 2 receptor mRNA and absence of the protein in craniospinal and extracranial metastasis of a malignant prolactinoma: a case report. Eur J Endocrinol 2002;146:81–88.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Institute of Endocrine Sciences, Ospedale Maggiore IRCCSUniversity of MilanMilanoItaly
  2. 2.Institute of Endocrine Sciences, Ospedale Maggiore IRCCSUniversity of MilanMilanoItaly

Personalised recommendations