Skip to main content
Log in

Role of secondary metabolites in plant defense mechanisms: a molecular and biotechnological insights

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

The plants produce secondary metabolites (SMs) as defence compounds against both abiotic and biotic stresses. These stresses instigate the secretion and release of SMs by up or down-regulating the concerned genes involved in their synthesis. The secretion of SMs varies with the plant's genetic constitution and accordingly-they are susceptible or resistant. These metabolites mostly act as deterrents or antifeedants, allelochemicals, toxins or precursors of other metabolites that defend plants from stresses. However, some pathogens use these metabolites as a signal for host recognition or nutrition rather than using them as toxins or deterrents. The SMs activate different signalling pathways e.g. terpenoids modulate the calcineurin pathway, sesquiterpenoids modulate the jasmonic acid and salicylic acid pathway, polyphenols activate the jasmonic acid and phenylpropanoid pathway, and alkaloids activate the salicylic acid pathway to protect against pathogens and herbivores. Polyphenolic compounds provide resistance to different microbes by expressing different pathogenesis-proteins and hypersensitive reaction-mediated cell death and eliminate pathogens by altering the membrane permeability (inhibiting efflux pump), cell wall integrity, suppressing enzyme activity, free radicals’ generation, inhibiting protein biosynthesis, damaging DNA and reducing the expression of virulent genes. Flavonoids help plants sustain pathogen stresses through the changes in the auxin transport process. The pathogen exposure upregulate genes of alkaloid synthesis pathways such as tyrosine decarboxylase (TyDC), S-norcoclurine synthase (NCS), codeinone reductase 2-like (COR-2), and StWRKY8 transcription factors which in turn accumulate alkaloids in large amounts. Plant exposure to pathogens leads to hypersensitivity reactions and phytoalexin accumulation. The plant's treatment of salicylic acid and jasmonic acid upregulated downstream transcription factors, increased the expression of defence proteins, triggered the synthesis of SMs, and provided resistance against multiple pathogens. Pathogens and herbivores have also coevolved to cope with defence metabolites by detoxifying the toxic metabolites, converting toxins into useful products, evolving their food choice, fast digestive system, expulsion of toxins, and down-regulation of the gene-producing secondary metabolites. This review article gives a molecular insight into the genes and regulatory proteins controlling the synthesis of SMs, which may help decipher the role of the biosynthetic pathway intermediates and thereby scoring genes providing resistance to various stresses. The article comprehensively describes the roles of different SMs in plant defence and their molecular mechanisms of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Afroz M, Rahman M, Amin R (2021) Insect plant interaction with reference to secondary metabolites: a review. Agric Rev 42:427–433

    Google Scholar 

  • Ahmad S, Veyrat N, Gordon-Weeks R, Zhang Y, Martin J, Smart L, Glauser G, Erb M, Flors V, Frey M, Ton J (2011) Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize. Plant Physiol 157:317–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90

    Article  CAS  PubMed  Google Scholar 

  • Al Aboody MS, Micky Maray S (2020) Antifungal efficacy and mechanisms of flavonoids. Antibiotics 9:1–42

    Article  Google Scholar 

  • Ali JG, Agrawal AA (2012) Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci 17:293–302

    Article  CAS  PubMed  Google Scholar 

  • Al-Khayri JM, Rashmi R, Toppo V, Chole PB, Banadka A, Sudheer WN, Nagella P, Shehata WF, Al-Mssallem MQ, Alessa FM, Almaghasla MI, Rezk AA-S (2023) Plant secondary metabolites: the weapons for biotic stress management. Metabolites 13:716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso-Ramírez A, Poveda J, Martín I, Hermosa R, Monte E, Nicolás C (2014) Salicylic acid prevents Trichoderma harzianum from entering the vascular system of roots. Mol Plant Pathol 15:823–831

    Article  PubMed  PubMed Central  Google Scholar 

  • Aneja M, Gianfagna T (2001) Induction and accumulation of caffeine in young, actively growing leaves of cocoa (Theobroma cacao L.) by wounding or infection with Crinipellis perniciosa. Physiol Mol Plant Pathol 59:13–16

    Article  CAS  Google Scholar 

  • Anjali SK, Korra T, Rajneesh Thakur R, Arutselvan AS, Kashyap YN, Chaplygin V, Minkina T, Keswani C (2023) Role of plant secondary metabolites in defence and transcriptional regulation in response to biotic stress. Plant Stress 8:100154

    Article  Google Scholar 

  • Ansari MA, Fatima Z, Hameed S (2014) Sesamol: A natural phenolic compound with promising anticandidal potential. J Pathog 2014:1–12

    Article  Google Scholar 

  • Aprile AM, Coppola M, Turrà D, Vitale S, Cascone P, Diretto G, Fiore A, Castaldi V, Romanelli A, Avitabile C, Guerrieri E (2022) Combination of the Systemin peptide with the beneficial fungus Trichoderma afroharzianum T22 improves plant defense responses against pests and diseases. J Plant Interact 17:569–579

    Article  CAS  Google Scholar 

  • Arrázola G, Grane N, Dicenta F (2021) Quantification of cyanogenic compounds, amygdalin, prunasin, and hydrocyanic acid in almonds (Prunus dulcis Miller) for industrial uses. Rev Colomb Cienc Hortic 15:1–13

    Article  Google Scholar 

  • Badmi R, Gogoi A, Doyle Prestwich B (2023) Secondary metabolites and their role in strawberry defense. Plants 12:3240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai Q, Duan B, Ma J, Fen Y, Sun S, Long Q, Lv J, Wan D (2020) Coexpression of PalbHLH1 and PalMYB90 genes from Populus alba enhances pathogen resistance in poplar by increasing the flavonoid content. Front Plant Sci 10:1–14

    Article  Google Scholar 

  • Bak S, Paquette SM, Morant M, Morant AV, Saito S, Bjarnholt N, Zagrobelny M, Jørgensen K, Osmani S, Simonsen HT, Pérez RS (2006) Cyanogenic glycosides: a case study for evolution and application of cytochromes P450. Phytochem Rev 5:309–329

    Article  CAS  Google Scholar 

  • Banasiak J, Biała W, Staszków A, Swarcewicz B, Kępczyńska E, Figlerowicz M, Jasiński M (2013) A Medicago truncatula ABC transporter belonging to subfamily G modulates the level of isoflavonoids. J Exp Bot 64:1005–1015

    Article  CAS  PubMed  Google Scholar 

  • Belchi-Navarro S, Pedreno MA, Corchete P (2011) Methyl jasmonate increases silymarin production in Silybum marianum (L.) Gaernt cell cultures treated with β-cyclodextrins. Biotechnol Lett 33:179–184

    Article  CAS  PubMed  Google Scholar 

  • Belhadj A, Telef N, Saigne C, Cluzet S, Barrieu F, Hamdi S, Mérillon JM (2008) Effect of methyl jasmonate in combination with carbohydrates on gene expression of PR proteins, stilbene and anthocyanin accumulation in grapevine cell cultures. Plant Physiol Biochem 46:493–499

    Article  CAS  PubMed  Google Scholar 

  • Bennett RN, Wallsgrove RM (1994) Secondary metabolites in plant defense mechanisms. New Phytol 127:617–633

    Article  CAS  PubMed  Google Scholar 

  • Bezhuashvili M, Tskhvedadze L, Surguladze M, Shoshiashvili G, Elanidze L, Vashakidze P (2020) Change of phytoalexins-stilbenoids of vine leave Tsitska variety (Vitis vinifera L.) in condition Downy mildew. EurAsian J. Biosci. 14:167–171

    CAS  Google Scholar 

  • Bhattarai B, Steffensen SK, Staerk D, Laursen BB, Fomsgaard IS (2022) Data-dependent acquisition-mass spectrometry guided isolation of new benzoxazinoids from the roots of Acanthus mollis L. Int J Mass Spectrom 474:116815

    Article  CAS  Google Scholar 

  • Bhonwong A, Stout MJ, Attajarusit J, Tantasawat P (2009) Defensive role of tomato polyphenol oxidases against cotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua). J Chem Ecol 35:28–38

    Article  CAS  PubMed  Google Scholar 

  • Birkenbihl RP, Kracher B, Roccaro M, Somssich IE (2017) Induced genome-wide binding of three arabidopsis wrky transcription factors during early mamp-triggered immunity. Plant Cell 29:20–38

    Article  CAS  PubMed  Google Scholar 

  • Bittel P, Robatzek S (2007) Microbe-associated molecular patterns (MAMPs) probe plant immunity. Curr Opin Plant Biol 10:335–341

    Article  CAS  PubMed  Google Scholar 

  • Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci USA 95:4126–4133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borges AA, Borges-Perez A, Fernandez-Falcon M (2003) Effect of menadione sodium bisulfite, an inducer of plant defenses, on the dynamic of banana phytoalexin accumulation during pathogenesis. J Agric Food Chem 51:5326–5328

    Article  CAS  PubMed  Google Scholar 

  • Braunsdorf C, Mailänder-Sánchez D, Schaller M (2016) Fungal sensing of host environment. Cell Microbiol 18:1188–1200

    Article  CAS  PubMed  Google Scholar 

  • Bu B, Qiu D, Zeng H, Guo L, Yuan J, Yang X (2014) A fungal protein elicitor PevD1 induces Verticillium wilt resistance in cotton. Plant Cell Rep 33:461–470

    Article  CAS  PubMed  Google Scholar 

  • Buxdorf K, Rahat I, Gafni A, Levy M (2013) The epiphytic fungus Pseudozyma aphidis induces jasmonic acid-and salicylic acid/nonexpressor of PR1-independent local and systemic resistance. Plant Physiol 161:2014–2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catinot J, Buchala A, Abou-Mansour E, Métraux JP (2008) Salicylic acid production in response to biotic and abiotic stress depends on isochorismate in Nicotiana benthamiana. FEBS Lett 582:473–478

    Article  CAS  PubMed  Google Scholar 

  • Chang X, Heene E, Qiao F, Nick P (2011) The phytoalexin resveratrol regulates the initiation of hypersensitive cell death in Vitis cell. PLoS ONE 6:1–12

    Article  Google Scholar 

  • Chen CY, Liu YQ, Song WM et al (2019) An effector from cotton bollworm oral secretion impairs host plant defense signaling. Proc Natl Acad Sci USA 116:14331–14338

  • Chen C, Liu F, Zhang K, Niu X, Zhao H, Liu Q, Georgiev MI, Xu X, Zhang X, Zhou M (2022a) MeJA-responsive bHLH transcription factor LjbHLH7 regulates cyanogenic glucoside biosynthesis in Lotus japonicus. J Exp Bot 73:2650–2665

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Mubeen B, Hasnain A, Rizwan M, Adrees M, Naqvi SAH, Iqbal S, Kamran M, El-Sabrout AM, Elansary HO, Mahmoud EA, Alaklabi A, Sathish M, Din GMU (2022b) Corrigendum: role of promising secondary metabolites to confer resistance against environmental stresses in crop plants: current scenario and future perspectives. Front Plant Sci 13:881032

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen L, Wu F, Zhang J (2021a) NAC and MYB families and lignin biosynthesis-related members identification and expression analysis in Melilotus albus. Plants 10:303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Zhang L, Xiang S, Chen Y, Zhang H, Yu D (2021b) The transcription factor WRKY75 positively regulates jasmonate-mediated plant defense to necrotrophic fungal pathogens. J Exp Bot 72:1473–1489

    Article  CAS  PubMed  Google Scholar 

  • Cho MH, Lee SW (2015) Phenolic phytoalexins in rice: biological functions and biosynthesis. Int J Mol Sci 16:29120–29133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi Y-H, Choi CW, Hong SH, Park SK, Oh JS, Lee D, Hong SS (2019) Coixlachryside B: a new benzoxazinoid glycoside from the roots of Coix lachryma-jobi var. ma-yuen (Gramineae). J Asian Nat Prod Res 21:806–812

    Article  CAS  PubMed  Google Scholar 

  • Cohen S, Flescher E (2009) Methyl jasmonate: a plant stress hormone as an anti-cancer drug. Phytochemistry 70:1600–1609

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Beltrán-Peña E, Herrera-Estrella A, López-Bucio J (2011) Trichoderma-induced plant immunity likely involves both hormonal-and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea. Plant Signal Behav 6:1554–1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuny MA et al (2019) Role of cyanogenic glycosides in the seeds of wild lima bean, Phaseolus lunatus: defense, plant nutrition or both? Planta 250:1281–1292

    Article  CAS  PubMed  Google Scholar 

  • Daayf F, El Hadrami A, El-Bebany AF, Henriquez MA, Yao Z, Derksen H, El Hadrami I, Adam LR (2012) Phenolic compounds in plant defense and pathogen counter-defense mechanisms. Rec Adv Polyphen Res 3:191–208

    Article  CAS  Google Scholar 

  • Demole E, Lederer E, Mercier D (1962) Isolement et d´etermination de la structure du jasmonate de m´ethyle, constituant odorant charact´eristique de l’essence de jasmin. Helv Chim Acta 45:675–685

    Article  CAS  Google Scholar 

  • Deng Y, Lu S (2017) Biosynthesis and regulation of phenylpropanoids in plants. CRC Crit Rev Plant Sci 36:257–290

    Article  Google Scholar 

  • Desmedt W, Jonckheere W, Nguyen VH, Ameye M, De Zutter N, De Kock K, Debode J, Van Leeuwen T, Audenaert K, Vanholme B, Kyndt T (2021) The phenylpropanoid pathway inhibitor piperonylic acid induces broad-spectrum pest and disease resistance in plants. Plant Cell Environ 44:3122–3139

    Article  CAS  PubMed  Google Scholar 

  • Dey P, Kundu A, Kumar A, Gupta M, Lee BM, Bhakta T, Dash S, Kim HS (2020) Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). In: Recent advances in natural products analysis, pp 505–567. Elsevier

  • Divekar PA, Narayana S, Divekar BA, Kumar R, Gadratagi BG, Ray A, Singh AK, Rani V, Singh V, Singh AK, Kumar A (2022) Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Int J Mol Sci 23:2690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egamberdieva D et al (2017) Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front Microbiol 8:1–14

    Article  Google Scholar 

  • El Khawand T, Gabaston J, Taillis D, Iglesias M-L, Pedrot E, Palos Pinto A, Valls Fonayet J, Merillon JM, Decendit A, Cluzet S, Richard T (2020) A dimeric stilbene extract produced by oxidative coupling of resveratrol active against Plasmopara viticola and Botrytis cinerea for vine treatments. OENO One 54:157–164

    Article  Google Scholar 

  • El-Maraghy SS, Tohamy TA, Hussein KA (2020) Role of plant-growth promoting fungi (PGPF) in defensive genes expression of Triticum aestivum against wilt disease. Rhizosphere 15:1–8

    Article  Google Scholar 

  • Fernandes KR, Bittercourt PS, Souza AD, Souza AQ, Silva FM, Lima ES, Acho LD, Nunomura RD, Teixeira AF, Koolen HH (2019) Phenolic compounds from Virola venosa (Myristicaceae) and evaluation of their antioxidant and enzyme inhibition potential. Acta Amazon 49:48–53

    Article  Google Scholar 

  • Florean M, Luck K, Hong B, Nakamura Y, Oconnor SE, Köllner TG (2023) Reinventing metabolic pathways: independent evolution of benzoxazinoids in flowering plants. Proc Natl Acad Sci USA 120:e2307981120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friml J, Benková E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jürgens G, Palme K (2002a) AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108:661–673

    Article  CAS  PubMed  Google Scholar 

  • Friml J, Wiśniewska J, Benková E, Mendgen K, Palme K (2002b) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809

    Article  PubMed  Google Scholar 

  • Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N, Dong X (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486:228–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaikar N, Raval M, Patel S, Patel P, Hingorani L (2021) Isolation, characterization and estimation of benzoxazinoid glycoside from seeds of Blepharis persica (Burm.f) O. Kuntze. Sep Sci plus 4:163–173

    Article  CAS  Google Scholar 

  • Galván-Ampudia CS, Offringa R (2007) Plant evolution: AGC kinases tell the auxin tale. Trends Plant Sci 12:541–547

    Article  PubMed  Google Scholar 

  • Galweiler L, Guan C, Muller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230

    Article  CAS  PubMed  Google Scholar 

  • Geisler M, Blakeslee JJ, Bouchard R, Lee OR, Vincenzetti V, Bandyopadhyay A, Titapiwatanakun B, Peer WA, Bailly A, Richards EL, Ejendal KF (2005) Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J 44:179–194

    Article  CAS  PubMed  Google Scholar 

  • Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3:408–411

    Article  CAS  PubMed  Google Scholar 

  • Gleadow RM, Møller BL (2014) Cyanogenic glycosides: synthesis, physiology, and phenotypic plasticity. Annu Rev Plant Biol 65:155–185

    Article  CAS  PubMed  Google Scholar 

  • Gleńsk M, Gajda B, Franiczek R, Krzyżanowska B, Biskup I, Włodarczyk M (2016) In vitro evaluation of the antioxidant and antimicrobial activity of DIMBOA [2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one]. Nat Prod Res 30:1305–1308

    Article  PubMed  Google Scholar 

  • Gomez SK, Cox MM, Bede JC, Inoue K, Alborn HT, Tumlinson JH, Korth KL (2005) Lepidopteran herbivory and oral factors induce transcripts encoding novel terpene synthases in Medicago truncatula. Arch Insect Biochem Physiol 58:114–127

    Article  CAS  PubMed  Google Scholar 

  • González-Hernández AI, Scalschi L, Vicedo B, Marcos-Barbero EL, Morcuende R, Camañes G (2022) Putrescine: a key metabolite involved in plant development, tolerance and resistance responses to stress. Int J Mol Sci 23:2971–3023

    Article  PubMed  PubMed Central  Google Scholar 

  • Goosens JFV, Vendrig JC (1982) Effects of abscissic acid, cytokinins, and light on isoflavonoid phytoalexin accumulation in Phaseolus vulgaris. Planta 154:441–446

    Article  Google Scholar 

  • Graham TL, Graham MY, Subramanian S, Yu O (2007) RNAi silencing of genes for elicitation or biosynthesis of 5-deoxyisoflavonoids suppresses race-specific resistance and hypersensitive cell death in Phytophthora sojae infected tissues. Plant Physiol 144:728–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habash SS, Könen PP, Loeschcke A, Wüst M, Jaeger K-E, Drepper T, Grundler FMW, Schleker ASS (2020) the plant sesquiterpene nootkatone efficiently reduces Heterodera schachtii parasitism by activating plant defense. Int J Mol Sci 21:9627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handrick V, Robert CAM, Ahern KR, Zhou S, Machado RAR, Maag D, Glauser G, Fernandez-Penny FE, Chandran JN, Rodgers-Melnick E, Schneider B, Buckler ES, Boland W, Gershenzon J, Jander G, Erb M, Köllner TG (2016) Biosynthesis of 8-O-methylated benzoxazinoid defense compounds in maize. Plant Cell 00065:2016

    Google Scholar 

  • Hano CF, Dinkova-Kostova AT, Davin LB, Cort JR, Lewis NG (2021) Editorial: lignans: insights into their biosynthesis, metabolic engineering, analytical methods and health benefits. Front Plant Sci 11:630327

  • Harun-Or-Rashid M, Kim HJ, Yeom SI, Yu HA, Manir MM, Moon SS, Kang YJ, Chung YR (2018) Bacillus velezensis YC7010 enhances plant defenses against brown plant hopper through transcriptomic and metabolic changes in rice. Front Plant Sci 9:1904–1915

    Article  PubMed  PubMed Central  Google Scholar 

  • Hazrati H, Fomsgaard IS, Kudsk P (2020) Root-exuded benzoxazinoids: uptake and translocation in neighboring plants. J Agri Food Chem 68:10609–10617

    Article  CAS  Google Scholar 

  • He J, Ma L, Wang D, Zhang M, Zhou H (2019a) Ferulic acid treatment reinforces the resistance of post harvest apple fruit during graymold infection. J Plant Pathol 101:503–511

    Article  Google Scholar 

  • He X, Jiang Y, Chen S, Chen F, Chen F (2023) Terpenoids and their possible role in defense against a fungal pathogen Alternaria tenuissima in Chrysanthemum morifolium cultivars. J Plant Growth Regul 42:1144–1157

    Article  CAS  Google Scholar 

  • He Y, Xu J, Wang X, He X, Wang Y, Zhou J, Zhang S, Meng X (2019b) The Arabidopsis pleiotropic drug resistance transporters PEN3 and PDR12 mediate camalexin secretion for resistance to Botrytis cinerea. Plant Cell 31:2206–2222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helfrich EJ, Lin GM, Voigt CA, Clardy J (2019) Bacterial terpene biosynthesis: challenges and opportunities for pathway engineering. Beilstein J Org Chem 15:2889–2906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henfling JWDM, Bostock RM, Kuc J (1980) Effect of abscisic acid on rishitin and lubimin accumulation and resistance to Phytophthora infestans and Cladosporium cucumerinum in potato tuber tissue slices. Phytopathology 70:1074–1078

    Article  CAS  Google Scholar 

  • Hickman DT, Rasmussen A, Ritz K, Birkett MA, Neve P (2021) Review: Allelochemicals as multi-kingdom plant defence compounds: towards an integrated approach. Pest Manag Sci 77:1121–1131

    Article  CAS  PubMed  Google Scholar 

  • Hogenhout SA, Bos JI (2011) Effector proteins that modulate plant–insect interactions. Curr Opin Plant Biol 14:422–428

    Article  CAS  PubMed  Google Scholar 

  • Hölscher D, Dhakshinamoorthy S, Alexandrov T, Becker M, Bretschneider T, Buerkert A, Crecelius AC, De Waele D, Elsen A, Heckel DG, Heklau H (2014) Phenalenone-type phytoalexins mediate resistance of banana plants (Musa spp.) to the burrowing nematode Radopholus similis. Proc Natl Acad Sci 111:105–110

    Article  PubMed  Google Scholar 

  • Hossain MM, Sultana F, Kubota M, Koyama H, Hyakumachi M (2007) The plant growth-promoting fungus Penicillium simplicissimum GP17-2 induces resistance in Arabidopsis thaliana by activation of multiple defense signals. Plant Cell Physiol 48:1724–1736

    Article  CAS  PubMed  Google Scholar 

  • Hu JY, Yang T, Liu J, Xiao L, Lin LB, Li YC, Ge MY, Ji P, Xiao J, Wang XL (2022) Two new sesquiterpenoids from plant endophytic fungus Flammulina velutipes. J Asian Nat Prod Res 12:1–7

    CAS  Google Scholar 

  • Hu L, Ye M, Erb M (2019) Integration of two herbivore-induced plant volatiles results in synergistic effects on plant defence and resistance. Plant Cell Environ 42:959–971

    Article  CAS  PubMed  Google Scholar 

  • Huang LQ, Li PP, Yin J, Li YK, Chen DK, Bao HN, Fan RY, Liu HZ, Yao N (2022) The Arabidopsis alkaline ceramidase ACER functions in defense against insect herbivory. J Exp Bot 73:4954–4967

    Article  CAS  PubMed  Google Scholar 

  • Islam MT, Lee BR, Lee H, Jung WJ, Bae DW, Kim TH (2019) p-Coumaric acid induces jasmonic acid-mediated phenolic accumulation and resistance to black rot disease in Brassica napus. Physiol Mol Plant Pathol 106:270–275

    Article  CAS  Google Scholar 

  • Jeandet P (2015) Phytoalexins: current progress and future prospects. Molecules 20:2770–2774

    Article  CAS  PubMed Central  Google Scholar 

  • Jeschke V, Kearney EE, Schramm K, Kunert G, Shekhov A, Gershenzon J, Vassão DG (2017) How glucosinolates affect generalist lepidopteran larvae: growth, development and glucosinolate metabolism. Front Plant Sci 8:310911

    Article  Google Scholar 

  • Jibril SM, Jakada BH, Kutama AS, Umar HY (2016) Plant and pathogens: pathogen recognision, invasion and plant defense mechanism. Int J Curr Microbiol Appl Sci 5:247–257

    Google Scholar 

  • Joubert A, Simoneau P, Campion C, Bataillé-Simoneau N, Iacomi-Vasilescu B, Poupard P, François JM, Georgeault S, Sellier E, Guillemette T (2011) Impact of the unfolded protein response on the pathogenicity of the necrotrophic fungus Alternaria brassicicola. Mol Microbiol 79:1305–1324

    Article  CAS  PubMed  Google Scholar 

  • Kandaswamy R, Ramasamy MK, Palanivel R, Balasundaram U (2019) Impact of Pseudomonas putida RRF3 on the root transcriptome of rice plants: insights into defense response, secondary metabolism and root exudation. J Biosci 44:1–3

    Article  CAS  Google Scholar 

  • Kapoor S, Handa A (2018) Role of total phenolic compounds in inducing hypersensitive reaction against PNRSV in peach. J Pharmacogn Phytochem 7:766–776

    CAS  Google Scholar 

  • Kariya K, Fujita A, Ueno M, Yoshikawa T, Teraishi M, Taniguchi Y, Ueno K, Ishihara A (2023) Natural variation of diterpenoid phytoalexins in rice: aromatic diterpenoid phytoalexins in specific cultivars. Phytochem 211:113708

    Article  CAS  Google Scholar 

  • Karre S, Kumar A, Yogendra K, Kage U, Kushalappa A, Charron JB (2019) HvWRKY23 regulates flavonoid glycoside and hydroxycinnamic acid amide biosynthetic genes in barley to combat Fusarium head blight. Plant Mol Biol 100:591–605

    Article  CAS  PubMed  Google Scholar 

  • Karssemeijer PN, Reichelt M, Gershenzon J, van Loon J, Dicke M (2020) Foliar herbivory by caterpillars and aphids differentially affects phytohormonal signalling in roots and plant defence to a root herbivore. Plant Cell Environ 43:775–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khare S, Singh NB, Singh A, Hussain I, Niharika K, Yadav V, Bano C, Yadav RK, Amist N (2020) Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints. J Plant Biol 63:203–216

    Article  CAS  Google Scholar 

  • Kim DS, Hwang BK (2014) An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. J Exp Bot 65:2295–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SH, Kim SH, Yoo SJ, Min KH, Nam SH, Cho BH, Yang KY (2013) Putrescine regulating by stress-responsive MAPK cascade contributes to bacterial pathogen defence in Arabidopsis. Biochem Biophys Res Commun 437:502–508

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Lam PY, Lee M-H, Jeon HS, Tobimatsu Y, Park OK (2020) The Arabidopsis R2R3 myb transcription factor myb15 is a key regulator of lignin biosynthesis in effector-triggered immunity. Front Plant Sci 11:583153

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim YS, Lee M, Lee J-H, Lee H-J, Park C-M (2015) The unified ICE–CBF pathway provides a transcriptional feedback control of freezing tolerance during cold acclimation in Arabidopsis. Plant Mol Biol 89:187–201

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Sano H (2008) Pathogen resistance of transgenic tobacco plants producing caffeine. Phytochemistry 69:882–888

    Article  CAS  PubMed  Google Scholar 

  • Kiyama H, Matsunaga A, Suzuki G, Gomi K (2021) Monoterpene geraniol produced by rice terpene synthase 21 suppresses the expression of cell-division-related genes in the rice bacterial pathogen, Xanthomonas oryzae pv. oryzae. Physiol Mol Plant Pathol 115:1–6

    Article  Google Scholar 

  • Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P, Trifa Y (2000) Nitric oxide and salicylic acid signalling in plant defence. Proc Natl Acad Sci 97:8849–8855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koga J, Kubota H, Gomi S, Umemura K, Ohnishi M, Kono T (2006) Cholic acid, a bile acid elicitor of hypersensitive cell death, pathogenesis-related protein synthesis, and phytoalexin accumulation in rice. Plant Physiol 140:1475–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koga J, Yamauchi T, Shimura M, Ogawa N, Oshima K, Umemura K, Kikuchi M, Ogasawara N (1998) Cerebrosides A and C, sphingolipid elicitors of hypersensitive cell death and phytoalexin accumulation in rice plants. J Biol Chem 273:31985–31991

    Article  CAS  PubMed  Google Scholar 

  • Konan YK, Kouassi KM, Kouakou KL, Koffi E, Kouassi KN, Sekou D, Kone M, Kouakou TH (2014) Effect of methyl jasmonate on phytoalexins biosynthesis and induced disease resistance to Fusarium oxysporum f. sp. Vasinfectum in cotton (Gossypium hirsutum L.). Int J Agron. https://doi.org/10.1155/2014/806439

    Article  Google Scholar 

  • Kotopka BJ, Smolke CD (2019) Production of the cyanogenic glycoside dhurrin in yeast. Metab Eng Commun 9:e00092

    Article  PubMed  PubMed Central  Google Scholar 

  • Król P, Igielski R, Pollmann S, Kępczyńska E (2015) Priming of seeds with methyl jasmonate induced resistance to hemi-biotroph Fusarium oxysporum f. sp. lycopersici in tomato via 12-oxo-phytodienoic acid, salicylic acid, and flavonol accumulation. J Plant Physiol 179:122–132

    Article  PubMed  Google Scholar 

  • Kumar S, Abedin MM, Singh AK, Das S (2020) Role of phenolic compounds in plant-defensive mechanisms. Plant Phenol Sustain Agri 1:517–532

    Google Scholar 

  • Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:1–17

    Google Scholar 

  • Lavania M, Chauhan PS, Chauhan SV, Singh HB, Nautiyal CSO (2006) Induction of plant defense enzymes and phenolics by treatment with plant growth–promoting rhizobacteria Serratia marcescens NBRI1213. Curr Microbiol 52:363–368

    Article  CAS  PubMed  Google Scholar 

  • Lefevere H, Bauters L, Gheysen G (2020) Salicylic acid biosynthesis in plants. Front Plant Sci 11:1–7

    Article  Google Scholar 

  • Lei J, Jayaprakasha GK, Singh J, Uckoo R, Borrego EJ, Finlayson S, Kolomiets M, Patil BS, Braam J, Zhu-Salzman K (2019) CIRCADIAN CLOCK-ASSOCIATED1 controls resistance to aphids by altering indole glucosinolate production. Plant Physiol 181:1344–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leybourne DJ, Valentine TA, Binnie K, Taylor A, Karley AJ, Bos JI (2022) Drought stress increases the expression of barley defence genes with negative consequences for infesting cereal aphids. J Exp Bot 73:2238–2250

    Article  CAS  PubMed  Google Scholar 

  • Li J, Huang H-C, Zuo Y-Q, Zhang M-Y, He M-L, Xia K-F (2024) PatWRKY71 transcription factor regulates patchoulol biosynthesis and plant defense response. BMC Plant Biol 24(1):8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Jin J, Xu J, Wang L, Li J, Lou Y, Baldwin IT (2021) Long non-coding RNAs associate with jasmonate-mediated plant defence against herbivores. Plant Cell Environ 44:982–994

    Article  CAS  PubMed  Google Scholar 

  • Li R, Zhang J, Li J, Zhou G, Wang Q, Bian W, Erb M, Lou Y (2015) Prioritizing plant defence over growth through WRKY regulation facilitates infestation by non-target herbivores. Elife 4:e04805

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Yu T, Wu T, Wang R, Wang H, Du H, Xu X, Xie D, Xu X (2020) The dynamic transcriptome of pepper (Capsicum annuum) whole roots reveals an important role for the phenylpropanoid biosynthesis pathway in root resistance to Phytophthora capsici. Gene 728:144288

    Article  CAS  PubMed  Google Scholar 

  • Lin YM, Shih SL, Lin WC, Wu JW, Chen YT, Hsieh CY, Guan LC, Lin L, Cheng CP (2014) Phytoalexin biosynthesis genes are regulated and involved in plant response to Ralstonia solanacearum infection. Plant Sci 224:86–94

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Zhao Q, Cui X, Chen R, Li X, Qiu B, Ge F (2019a) A transcriptome analysis uncovers Panax notoginseng resistance to Fusarium solani induced by methyl jasmonate. Genes Genom 41:1383–1396

    Article  CAS  Google Scholar 

  • Liu G, Yang M, Fu J (2020a) Identification and characterization of two sesquiterpene synthase genes involved in volatile-mediated defense in tea plant (Camellia sinensis). Plant Physiol Biochem 155:650–657

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Du Y, Chu H, Shih CH, Wong YW, Wang M, Chu IK, Tao Y, Lo C (2010) Molecular dissection of the pathogen-inducible 3-deoxyanthocyanidin biosynthesis pathway in sorghum. Plant Cell Physiol 51:1173–1185

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Ma F, Wu F, Jiang C, Wang Y (2019b) Expression of stilbene synthase VqSTS6 from wild Chinese Vitis quinquangularis in grapevine enhances resveratrol production and powdery mildew resistance. Planta 250:1997–2007

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Hou Y, Liu W, Lu C, Wang W, Sun S (2015) Components of the calcium-calcineurin signalling pathway in fungal cells and their potential as antifungal targets. Eukaryot Cell 14(4):324–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Ji D, Cui X, Zhang Z, Li B, Xu Y, Chen T, Tian S (2020b) p-Coumaric acid induces antioxidant capacity and defense responses of sweet cherry fruit to fungal pathogens. Postharvest Biol Technol 169:111297–111299

    Article  CAS  Google Scholar 

  • Liu S, Ziegler J, Zeier J, Birkenbihl RP, Somssich IE (2017) Botrytis cinerea B05.10 promotes disease development in Arabidopsis by suppressing WRKY33-mediated host immunity. Plant Cell Environ 40:2189–2206

  • Luo HZ, Jiang H, Huang XS, Jia AQ (2022) New sesquiterpenoids from plant-associated Irpex lacteus. Front Chem 10:1–6

    Google Scholar 

  • Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S (2011) Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23:1639–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masyita A, Sari RM, Astuti AD, Yasir B, Rumata NR, Emran TB, Nainu F, Simal-Gandara J (2022) Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem X 13:100217–100314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazid M, Khan TA, Mohammad F (2011) Role of Nitric oxide in regulation of H2O2 mediating tolerance of plants to abiotic stress: A synergistic signaling approach. J Physiol Biochem 7:34–74

    Google Scholar 

  • Mencia R, Céccoli G, Fabro G, Torti P, Colombatti F, Ludwig-Müller J, Alvarez ME, Welchen E (2020) OXR2 increases plant defense against a hemibiotrophic pathogen via the salicylic acid pathway. Plant Physiol 184:1112–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mert-Türk F (2002) Phytoalexins: defence or just a response to stress. J Cell Mol Biol 1:1–6

    Google Scholar 

  • Mialoundama AS, Heintz D, Debayle D, Rahier A, Camara B, Bouvier F (2009) Abscisic acid negatively regulates elicitor-induced synthesis of capsidiol in wild tobacco. Plant Physiol 150:1556–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikail HG, Mohammed M, Umar HD, Suleiman MM (2022) Secondary Metabolites: The natural remedies. Secondary metabolites. IntechOpen

  • Mikulic-Petkovsek M, Slatnar A, Veberic R, Stampar F, Solar A (2011) Phenolic response in green walnut husk after the infection with bacteria Xanthomonas arboricola pv. juglandis. Physiol Mol Plant Pathol 76:159–166

    Article  CAS  Google Scholar 

  • Miller RE, Tuck KL (2013) The rare cyanogen proteacin, and dhurrin, from foliage of Polyscias australiana, a tropical Araliaceae. Phytochemistry 93:210–215

    Article  CAS  PubMed  Google Scholar 

  • Mohr P, Cahill DM (2001) Relative roles of glyceollin, lignin and the hypersensitive response and the influence of ABA in compatible and incompatible interactions of soybeans with Phytophthora sojae. Physiol Mol Plant Pathol 58:31–41

    Article  CAS  Google Scholar 

  • Mori A, Nishino C, Enoki N, Tawata S (1987) Antibacterial activity and mode of action of plant flavonoids against Proteus vulgaris and Staphylococcus aureus. Phytochem 26:2231–2234

    Article  CAS  Google Scholar 

  • Motallebi P, Niknam V, Ebrahimzadeh H, Hashemi M, Enferadi ST (2017) Exogenous methyl jasmonate treatment induces defense response against Fusarium culmorum in wheat seedlings. J Plant Growth Regul 36:71–82

    Article  CAS  Google Scholar 

  • Narnoliya LK, Sangwan N, Jadaun JS, Bansal S, Sangwan RS (2021) Defining the role of a caffeic acid 3-O-methyltransferase from Azadirachta indica fruits in the biosynthesis of ferulic acid through heterologous over-expression in Ocimum species and Withania somnifera. Planta 253:1–13

    Article  Google Scholar 

  • Negritto MC, Valdez C, Sharma J, Rosenberg C, Selassie CR (2017) Growth inhibition and DNA damage induced by X-phenols in yeast: a quantitative structure–activity relationship study. ACS Omega 2:8568–8579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen NH, Trotel-Aziz P, Villaume S, Rabenoelina F, Clément C, Baillieul F, Aziz A (2022) Priming of camalexin accumulation in induced systemic resistance by beneficial bacteria against Botrytis cinerea and Pseudomonas syringae pv. Tomato DC3000. J Exp Bot 73:3743–3757

    Article  CAS  PubMed  Google Scholar 

  • Nicholson RL, Hammerschmidt R (1992) Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol 30:369–389

    Article  CAS  Google Scholar 

  • Ninkuu V, Yan J, Fu Z, Yang T, Ziemah J, Ullrich MS, Kuhnert N, Zeng H (2022) Lignin and its pathway-associated phytoalexins modulate plant defense against fungi. J Fungi 9:52

    Article  Google Scholar 

  • Niu Y, Zhao X, Chao W, Lu P, Bai X, Mao T (2023) Genetic variation, DIMBOA accumulation, and candidate gene identification in maize multiple insect-resistance. Int J Mol Sci 24(3):2138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohemeng KA, Schwender CF, Fu KP, Barrett JF (1993) DNA gyrase inhibitory and antibacterial activity of some flavones. Bioorg Med Chem Lett 3(2):225–230

    Article  CAS  Google Scholar 

  • Okubo S, Sasaki T, Hara Y, Mori F, Shimamura T (1998) Bactericidal and anti-toxin activities of catechin on enterohemorrhagic Escherichia coli. Kansenshogaku zasshi. J Jap Assoc Infect Dis 72:211–217

    CAS  Google Scholar 

  • Oldfield E, Lin FY (2012) Terpene biosynthesis: modularity rules. Angew Chem Int Ed Engl 51:1124–1137

    Article  CAS  PubMed  Google Scholar 

  • Otomo K, Kanno Y, Motegi A, Kenmoku H, Yamane H, Mitsuhashi W, Oikawa H, Toshima H, Itoh H, Matsuoka M, Sassa T (2004) Diterpene cyclases responsible for the biosynthesis of phytoalexins, momilactones A, B, and oryzalexins A-F in rice. Biosci Biotechnol Biochem 68:2001–2006

    Article  CAS  PubMed  Google Scholar 

  • Pal G, Mehta D, Singh S, Magal K, Gupta S, Jha G, Bajaj A, Ramu VS (2021) Foliar application or seed priming of cholic acid-glycine conjugates can mitigate/prevent the rice bacterial leaf blight disease via activating plant defense genes. Front Plant Sci 12:1–16

    Article  Google Scholar 

  • Panda S, Jozwiak A, Sonawane PD, Szymanski J, Kazachkova Y, Vainer A, Vasuki Kilambi H, Almekias-Siegl E, Dikaya V, Bocobza S, Shohat H, Meir S, Wizler G, Giri AP, Schuurink R, Weiss D, Yasuor H, Kamble A, Aharoni A (2022) Steroidal alkaloids defence metabolism and plant growth are modulated by the joint action of gibberellin and jasmonate signalling. New Phytol 233(3):1220–1237

    Article  CAS  PubMed  Google Scholar 

  • Pant SR, Irigoyen S, Liu J, Bedre R, Christensen SA, Schmelz EA, Sedbrook JC, Scholthof K-BG, Mandadi KK (2021) Brachypodium phenylalanine ammonia lyase (PAL) promotes antiviral defenses against Panicum mosaic virus and its satellites. Mbio 12(1):10–1128

    Article  Google Scholar 

  • Papadopoulou GV, van Dam NM (2017) Mechanisms and ecological implications of plant-mediated interactions between belowground and aboveground insect herbivores. Ecol Res 32:13–26

    Article  CAS  Google Scholar 

  • Parizotto AV, Ferro AP, Marchiosi R, Finger-Teixeira A, Bevilaqua JM, dos Santos WD, Seixas FAV, Ferrarese-Filho O (2021) Inhibition of maize caffeate 3-o-methyltransferase by nitecapone as a possible approach to reduce lignocellulosic biomass recalcitrance. Plant Mol Biol Report 39:179–191

    Article  CAS  Google Scholar 

  • Paz C, Viscardi S, Iturra A, Marin V, Miranda F, Barra PJ, Mendez I, Duran P (2020) Antifungal effects of drimane sesquiterpenoids isolated from Drimys winteri against Gaeumannomyces graminis var. tritici. Appl Environ Microbiol 86:1–10

    Article  Google Scholar 

  • Pazouki L, Niinemets Ü (2016) Multi-substrate terpene synthases: their occurrence and physiological significance. Front Plant Sci 7:1–16

    Article  Google Scholar 

  • Pedras MS, Zheng QA, Gadagi RS, Rimmer SR (2008) Phytoalexins and polar metabolites from the oilseeds canola and rapeseed: differential metabolic responses to the biotroph Albugo candida and to abiotic stress. Phytochemistry 69:894–910

    Article  CAS  PubMed  Google Scholar 

  • Pennisi E (2017) How do gut microbes help herbivores? Counting the ways. Science 355: 236

  • Popa CV, Dumitru I, Ruta LL, Danet AF, Farcasanu IC (2010) Exogenous oxidative stress induces Ca2+ release in the yeast Saccharomyces cerevisiae. FEBS J 277:4027–4038

    Article  CAS  PubMed  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Jansen MA (2009) Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant Cell Environ 32:158–169

    Article  PubMed  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MA (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98–105

    Article  CAS  PubMed  Google Scholar 

  • Rice CP, Otte BA, Kramer M, Schomberg HH, Mirsky SB, Tully KL (2022) Benzoxazinoids in roots and shoots of cereal rye (Secale cereale) and their fates in soil after cover crop termination. Chemoecology 32:117–128

    Article  CAS  Google Scholar 

  • Robert-Seilaniantz A, MacLean D, Jikumaru Y, Hill L, Yamaguchi S, Kamiya Y, Jones JD (2011) The microRNA miR393 re-directs secondary metabolite biosynthesis away from camalexin and towards glucosinolates. Plant J 67:218–231

    Article  CAS  PubMed  Google Scholar 

  • Saga H, Ogawa T, Kai K, Suzuki H, Ogata Y, Sakurai N, Shibata D, Ohta D (2012) Identification and characterization of ANAC042, a transcription factor family gene involved in the regulation of camalexin biosynthesis in Arabidopsis. Mol Plant-Microbe Interact 25:684–696

    Article  CAS  PubMed  Google Scholar 

  • Sanzani SM, Schena L, De Girolamo A, Ippolito A, González-Candelas L (2010) Characterization of genes associated with induced resistance against Penicilliumexpansum in apple fruit treated with quercetin. Postharvest Biol Technol 56:1–11

    Article  CAS  Google Scholar 

  • Schläger S, Dräger B (2016) Exploiting plant alkaloids. Curr Opin Biotechnol 37:155–164

    Article  PubMed  Google Scholar 

  • Senaratna T, Touchell D, Bunn E, Dixon K (2000) Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul 30:157–161

    Article  CAS  Google Scholar 

  • Shahidi F, Yeo J (2018) Bioactivities of phenolics by focusing on suppression of chronic diseases: a review. Int J Mol Sci 19:1573

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahrokhi M, Yali MP, Bozorg-Amirkalaee M (2022) Role of exogenous elicitors in canola plant defense against cabbage aphid by regulating physiological balance and secondary metabolite biosynthesis. Res Sq. https://doi.org/10.21203/rs.3.rs-1575991/v1

    Article  Google Scholar 

  • Shavit R, Batyrshina ZS, Yaakov B, Florean M, Köllner TG, Tzin V (2022) The wheat dioxygenase BX6 is involved in the formation of benzoxazinoids in planta and contributes to plant defense against insect herbivores. Plant Sci 316:1–10

    Article  Google Scholar 

  • Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B (2022) Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity. Food Chem 383:1–13

    Article  Google Scholar 

  • Shi W, Luo S, Li S (2012) Defensive sesquiterpenoids from leaves of Eupatorium adenophorum. Chin J Chem 30:1331–1334

    Article  CAS  Google Scholar 

  • Shu P, Li Y, Wang X, Yao L, Sheng J, Shen L (2021) Exogenous ferulic acid treatment increases resistance against Botrytis cinerea in tomato fruit by regulating nitric oxide signaling pathway. Postharvest Biol Technol 182:111678–111679

    Article  CAS  Google Scholar 

  • Singh AP, Mani B, Giri J (2021) OsJAZ9 is involved in water-deficit stress tolerance by regulating leaf width and stomatal density in rice. Plant Physiol Biochem 162:161–170

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Fatima Z, Hameed S (2016) Insights into the mode of action of anticandidal herbal monoterpenoid geraniol reveal disruption of multiple MDR mechanisms and virulence attributes in Candida albicans. Arch Microbiol 198:459–472

    Article  CAS  PubMed  Google Scholar 

  • Skibbe M, Qu N, Galis I, Baldwin IT (2008) Induced plant defences in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory. Plant Cell 20:1984–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song P, Yu X, Yang W, Wang Q (2021) Natural phytoalexin stilbene compound resveratrol and its derivatives as anti-tobacco mosaic virus and anti-phytopathogenic fungus agents. Sci Rep 11:16509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song YY, Ye M, Li CY, Wang RL, Wei XC, Luo SM, Zeng RS (2013) Priming of anti-herbivore defence in tomato by arbuscular mycorrhizal fungus and involvement of the jasmonate pathway. J Chem Ecol 39:1036–1044

    Article  PubMed  Google Scholar 

  • Srinivasa C, Umesha S, Pradeep S, Ramu R, Gopinath SM, Ansari MA, Alomary MN, Ali A, Ahmad W, Kollur SP, Shivamallu C (2022) Salicylic acid-mediated enhancement of resistance in tomato plants against Xanthomonas perforans. Saud J Biol Sci 29:2253–2261

    Article  CAS  Google Scholar 

  • Su L, Fang L, Zhu Z, Zhang L, Sun X, Wang Y, Wang Q, Li S, Xin H (2020a) The transcription factor VaNAC17 from grapevine (Vitis amurensis) enhances drought tolerance by modulating jasmonic acid biosynthesis in transgenic Arabidopsis. Plant Cell Rep 39:621–634

    Article  CAS  PubMed  Google Scholar 

  • Su LH, Geng CA, Li TZ, Ma YB, Huang XY, Zhang XM, Chen JJ (2020b) Artatrovirenols A and B: two cagelike sesquiterpenoids from Artemisia atrovirens. J Org Chem 85:13466–13471

    Article  CAS  PubMed  Google Scholar 

  • Su Q, Rong W, Zhang Z (2022) The pathogen-induced MATE gene TaPIMA1 is required for defense responses to Rhizoctonia cerealis in wheat. Int J Mol Sci 23:3377–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su Y, Huang Y, Dong X, Wang R, Tang M, Cai J, Chen J, Zhang X, Nie G (2021) Exogenous methyl jasmonate improves heat tolerance of perennial ryegrass through alteration of osmotic adjustment, antioxidant defense, and expression of jasmonic acid-responsive genes. Front Plant Sci 12:664519

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamiru A, Bruce TJ, Richter A, Woodcock CM, Midega CA, Degenhardt J, Kelemu S, Pickett JA, Khan ZR (2017) A maize landrace that emits defense volatiles in response to herbivore eggs possesses a strongly inducible terpene synthase gene. Ecol Evol 7:2835–2845

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan J, Wang M, Shi Z, Miao X (2018) OsEXPA10 mediates the balance between growth and resistance to biotic stress in rice. Plant Cell Rep 37:993–1002

    Article  CAS  PubMed  Google Scholar 

  • Tanguy J, Martin C (1972) Phenolic compounds and the hypersensitivity reaction in Nicotiana tabacum infected with tobacco mosaic virus. Phytochemistry 11:19–28

    Article  CAS  Google Scholar 

  • Tattersall DB, Bak S, Jones PR, Olsen CE, Nielsen JK, Hansen ML, Høj PB, Møller BL (2001) Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Science 293:1826–1828

    Article  CAS  PubMed  Google Scholar 

  • Tayal M, Somavat P, Rodriguez I, Thomas T, Christoffersen B, Kariyat R (2020) Polyphenol-rich purple corn pericarp extract adversely impacts herbivore growth and development. InSects 11:98

    Article  PubMed  PubMed Central  Google Scholar 

  • Teasdale JR, Rice CP, Cai G, Mangum RW (2012) Expression of allelopathy in the soil environment: soil concentration and activity of benzoxazinoid compounds released by rye cover crop residue. Plant Ecol 213:1893–1905

    Article  Google Scholar 

  • Teng J, Iida K, Imai A, Nakano M, Tada T, Iida H (2013) Hyperactive and hypoactive mutations in Cch1, a yeast homologue of the voltagegated calcium-channel pore-forming subunit. Microbiology 159:970–979

    Article  CAS  PubMed  Google Scholar 

  • Textor S, Gershenzon J (2009) Herbivore induction of the glucosinolate–myrosinase defense system: major trends, biochemical bases and ecological significance. Phytochem Rev 8:149–170

    Article  CAS  Google Scholar 

  • Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9:297–304

    Article  CAS  PubMed  Google Scholar 

  • Thulke O, Conrath U (1998) Salicylic acid has a dual role in the activation of defence-related genes in parsley. Plant J 14:35–42

    Article  CAS  PubMed  Google Scholar 

  • Ting H-M, Cheah BH, Chen Y-C, Yeh P-M, Cheng C-P, Yeo FKS, Vie AK, Rohloff J, Winge P, Bones AM, Kissen R (2020) The role of a glucosinolate-derived nitrile in plant immune responses. Front Plant Sci 11:257

    Article  PubMed  PubMed Central  Google Scholar 

  • Travers-Martin N, Müller C (2007) Specificity of induction responses in Sinapis alba L. and their effects on a specialist herbivore. J Chem Ecol 33:1582–1597

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya H, Iinuma M (2000) Reduction of membrane fluidity by antibacterial sophoraflavanone G isolated from Sophora exigua. Phytomedicine 7:161–165

    Article  CAS  PubMed  Google Scholar 

  • Tsuji J, Jackson EP, Gage DA, Hammerschmidt R, Somerville SC (1992) Phytoalexin accumulation in Arabidopsis thaliana during the hypersensitive reaction to Pseudomonas syringae pv syringae. Plant Physiol 98:1304–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tzin V, Hojo Y, Strickler SR, Bartsch LJ, Archer CM, Ahern KR, Zhou S, Christensen SA, Galis I, Mueller LA, Jander G (2017) Rapid defense responses in maize leaves induced by Spodoptera exigua caterpillar feeding. J Exp Bot 68:4709–4723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyay A, Mooyottu S, Yin H, Nair M, Bhattaram V, Venkitanarayanan K (2015) Inhibiting microbial toxins using plant-derived compounds and plant extracts. Medicine 2:186–221

    CAS  Google Scholar 

  • Uruma S, Shibata Y, Takemoto D, Kawakita KN (2009) N-dimethylsphingosine, an inhibitor of sphingosine kinase, induces phytoalexin production and hypersensitive cell death of Solanaceae plants without generation of reactive oxygen species. J Gen Plant Pathol 75:257–266

    Article  CAS  Google Scholar 

  • Valletta A, Iozia LM, Leonelli F (2021) Impact of environmental factors on stilbene biosynthesis. Plants 10:90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Bockhaven J, Spíchal L, Novák O, Strnad M, Asano T, Kikuchi S, Höfte M, De Vleesschauwer D (2015) Silicon induces resistance to the brown spot fungus Cochliobolus miyabeanus by preventing the pathogen from hijacking the rice ethylene pathway. New Phytol 206:761–773

    Article  PubMed  Google Scholar 

  • Vaughan MM, Wang Q, Webster FX, Kiemle D, Hong YJ, Tantillo DJ, Coates RM, Wray AT, Askew W, O’Donnell C, Tokuhisa JG (2013) Formation of the unusual semivolatile diterpene rhizathalene by the Arabidopsis class I terpene synthase TPS08 in the root stele is involved in defense against belowground herbivory. Plant Cell 25:1108–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vergnes S, Gayrard D, Veyssière M, Toulotte J, Martinez Y, Dumont V, Bouchez O, Rey T, Dumas B (2020) Phyllosphere colonization by a soil Streptomyces sp. promotes plant defense responses against fungal infection. Mol Plant-Microbe Interact 33:223–234

    Article  CAS  PubMed  Google Scholar 

  • Vicente JG, Holub EB (2013) Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. Mol Plant Pathol 14:2–18

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Jiang C, Liu W, Wang Y (2020) The WRKY53 transcription factor enhances stilbene synthesis and disease resistance by interacting with MYB14 and MYB15 in Chinese wild grape. J Exp Bot 71:3211–3226

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Hao Z, Zhang X, Xie W, Chen B (2022) Arbuscular mycorrhizal fungi induced plant resistance against Fusarium wilt in jasmonate biosynthesis defective mutant and wild type of tomato. J Fungi 8:422–514

    Article  CAS  Google Scholar 

  • Wang H, Liang Y, Zhang B, Zheng W, Xing L, Li M (2011) Alkaline stress triggers an immediate calcium fluctuation in Candida albicans mediated by Rim101p and Crz1p transcription factors. FEMS Yeast Res 11:430–439

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Hou B (2009) Glycosyl transferases: key players involved in the modification of plant secondary metabolites. Front Biol 4:39–46

    Article  CAS  Google Scholar 

  • Wang JW, Wu JY (2005) Nitric oxide is involved in methyl jasmonate-induced defense responses and secondary metabolism activities of Taxus cells. Plant Cell Physiol 46:923–930

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Wang Z, Li S, Wang Z, Zhao J (2015) Mediated electrochemical method for the analysis of membrane damage effects of phenolic compounds to Staphylococcus aureus. J Electroanal Chem 757:44–50

    Article  CAS  Google Scholar 

  • War AR, Buhroo AA, Hussain B, Ahmad T, Nair RM, Sharma HC (2020) Plant defense and insect adaptation with reference to secondary metabolites. In: Mérillon, JM, Ramawat, K (eds), Co-Evol Sec Metabol, pp 795–822. https://doi.org/10.1007/978-3-319-96397-6_60

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in annals of botany. Ann Bot 111:1021–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasternack C, Kombrink E (2010) Jasmonates: structural requirements for lipid-derived signals active in plant stress responses and development. ACS Chem Biol 5:63–77

    Article  CAS  PubMed  Google Scholar 

  • Widodo GP, Sukandar EY, Adynyana IK (2012) Mechanism of action of Coumarin against Candida Albicans by SEM/TEM analysis. ITB J Sci 44:145–151

    Article  Google Scholar 

  • Willis K, (ed) (2017) State of the world’s plants; report; royal botanic gardens: London, UK, Available online: https://stateoftheworldsplants.org/. Accessed 18 Dec 2021

  • Wouters FC, Blanchette B, Gershenzon J, Vassão DG (2016) Plant defense and herbivore counter-defense: benzoxazinoids and insect herbivores. Phytochem Rev 15:1127–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Ye H, Yao R, Zhang T, Xiong L (2015) OsJAZ9 acts as a transcriptional regulator in jasmonate signalling and modulates salt stress tolerance in rice. Plant Sci 232:1–12

    Article  CAS  PubMed  Google Scholar 

  • Wu W-H, Chen T-Y, Lu R-W, Chen S-T, Chang C-C (2012) Benzoxazinoids from Scoparia dulcis (sweet broomweed) with antiproliferative activity against the DU-145 human prostate cancer cell line. Phytochemistry 83:110–115

    Article  CAS  PubMed  Google Scholar 

  • Xing Q, Liao J, Cao S, Li M, Lv T, Qi H (2020) CmLOX10 positively regulates drought tolerance through jasmonic acid-mediated stomatal closure in oriental melon (Cucumis melo var. makuwa Makino). Sci Rep 10:17452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Wang X, Zu H, Zeng X, Baldwin IT, Lou Y, Li R (2021) Molecular dissection of rice phytohormone signaling involved in resistance to a piercing-sucking herbivore. New Phytol 230:1639–1652

    Article  CAS  PubMed  Google Scholar 

  • Yadav V, Wang Z, Wei C, Amo A, Ahmed B, Yang X, Zhang X (2020) Phenylpropanoid pathway engineering: an emerging approach towards plant defense. Pathogens 9:312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Mao Q, Wang Y, Zhao J, Fu Y, Yang Z, Peng X, Zhang M, Bai B, Liu A, Chen S, Ahammed GJ (2021) Trichoderma Harzianum induces resistance to root-knot nematodes by increasing secondary metabolite synthesis and defense-related enzyme activity in Solanum lycopersicum L. Biol Control 158:104609

    Article  CAS  Google Scholar 

  • Yang J, Fei K, Chen J, Wang Z, Zhang W, Zhang J (2020) Jasmonates alleviate spikelet-opening impairment caused by high temperature stress during anthesis of photo-thermo-sensitive genic male sterile rice lines. Food Energy Secur 9:233

    Article  Google Scholar 

  • Yang L, Wen KS, Ruan X, Zhao YX, Wei F, Wang Q (2018) Response of plant secondary metabolites to environmental factors. Molecules 23:762

    Article  PubMed  PubMed Central  Google Scholar 

  • Yogendra KN, Dhokane D, Kushalappa AC, Sarmiento F, Rodriguez E, Mosquera T (2017) StWRKY8 transcription factor regulates benzylisoquinoline alkaloid pathway in potato conferring resistance to late blight. Plant Sci 256:208–216

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka M, Adachi A, Sato Y, Doke N, Kondo T, Yoshioka H (2019) RNAi of the sesquiterpene cyclase gene for phytoalexin production impairs pre-and post-invasive resistance to potato blight pathogens. Mol Plant Pathol 20:907–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu S, Yang F, Zou Y, Yang Y, Li T, Chen S, Wang Y, Xu K, Xia H, Luo L (2022) Overexpressing PpBURP2 in Rice increases plant defense to abiotic stress and bacterial leaf blight. Front Plant Sci 13:1–15

    Google Scholar 

  • Zeng J, Zhang T, Huangfu J, Li R, Lou Y (2021) Both Allene oxide synthases genes are involved in the biosynthesis of herbivore-induced jasmonic acid and herbivore resistance in rice. Plants 10:442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Yu Z, Zeng D, Si C, Zhao C, Wang H, Li C, He C, Duan J (2021) Transcriptome and metabolome reveal salt-stress responses of leaf tissues from Dendrobium officinale. Biomolecules 11:736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Ran W, Li X, Zhang J, Ye M, Lin S, Liu M, Sun X (2022) Exogenous application of gallic acid induces the direct defense of tea plant against Ectropis obliqua Caterpillars. Front Plant Sci 13:1–8

    Google Scholar 

  • Zhang YT, Zhang YL, Chen SX, Yin GH, Yang ZZ, Lee S, Liu CG, Zhao DD, Ma YK, Song FQ, Bennett JW (2015) Proteomics of methyl jasmonate induced defense response in maize leaves against Asian corn borer. BMC Genom 16:1–6

    Google Scholar 

  • Zhao G, Song Y, Wang Q, Yao D, Li D, Qin W, Ge X, Yang Z, Xu W, Su Z, Zhang X, Li F, Wu J (2020) Gossypium hirsutum salt tolerance is enhanced by overexpression of G. arboreum JAZ1. Front Bioeng Biotechnol 8:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Williams CC, Last RL (1998) Induction of Arabidopsis tryptophan pathway enzymes and camalexin by amino acid starvation, oxidative stress, and an abiotic elicitor. Plant Cell 10:359–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Wang X, He Y, Sang T, Wang P, Dai S, Zhang S, Meng X (2020) Differential phosphorylation of the transcription factor wrky33 by the protein kinases cpk5/cpk6 and mpk3/mpk6 cooperatively regulates camalexin biosynthesis in Arabidopsis. Plant Cell 32:2621–2638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu-Salzman K, Ahn JE, Salzman RA, Koiwa H, Shade RE, Balfe S (2003) Fusion of a soybean cysteine protease inhibitor and a legume lectin enhances anti-insect activity synergistically. Agric for Entomol 5:317–323

    Article  Google Scholar 

  • Ziegler T (2021) Identification and characterization of genes involved in stilbene biosynthesis and modification in Vitis Vinifera. https://archiv.ub.uni-heidelberg.de/volltextserver/30000

  • Zimmerli L, Métraux JP, Mauch-Mani B (2001) β-Aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea. Plant Physiol 126:517–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zipfel C (2008) Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol 20:10–16

    Article  CAS  PubMed  Google Scholar 

  • Zorrilla JG, Giovannini O, Nadalini S, Zanini A, Russo MT, Masi M, Puopolo G, Cimmino A (2024) Suppressive Activity of Glechoma hederacea extracts against the phytopathogenic oomycete Plasmopara viticola, and first screening of the active metabolites. Agriculture 14:58

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Richa Upadhyay thankfully acknowledges to Principal (Dr. Rajendra Singh, Mihir Bhoj PG College, Dadri, U.P. India) for his support and encouragement for research. Rajesh Saini acknowledges ICMR, New Delhi for providing a SRF.

Funding

No funding received.

Author information

Authors and Affiliations

Authors

Contributions

KNT: Gave the concept of the review and designed the outlook of the review. RU: Wrote the article and thoroughly reviewed it to finalize the content. RS: Wrote the article and drew the figures and tables of the article. PKS: Helped in reference style setup and also reviewed the article to finalize the content.

Corresponding author

Correspondence to K. N. Tiwari.

Ethics declarations

Conflict of interes

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, R., Saini, R., Shukla, P.K. et al. Role of secondary metabolites in plant defense mechanisms: a molecular and biotechnological insights. Phytochem Rev (2024). https://doi.org/10.1007/s11101-024-09976-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11101-024-09976-2

Keywords

Navigation