Skip to main content
Log in

Comparative structural analysis of plant uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs) in plant specialized metabolism: structures of plant UGTs for biosynthesis of steviol glycosides

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

In plants, uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs) catalyze the glycosylation of diverse plant specialized metabolites with potential values for nutritional and pharmaceutical applications. Along with increasing plant genomic information, structural analysis of plant UGTs has been utilized to understand the molecular basis of how UGTs function and to facilitate the synthesis of desirable bioactive natural products. Here, we summarize the sequence and structural information of structurally characterized plant UGTs involved in plant specialized metabolism. We then exemplify steviol glycosides, naturally occurring non-caloric sweeteners from Stevia rebaudiana, and their UGT-dependent biosynthetic pathways as an example of how structural biology provides a new versatile platform for understanding substrate specificity and developing successful protein engineering strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelsalam NR, Botros WA, Khaled AE, Ghonema MA, Hussein SG, Ali HM, Elshikh MS (2019) Comparison of uridine diphosphate-glycosyltransferase UGT76G1 genes from some varieties of Stevia rebaudiana Bertoni. Sci Rep 9:8559

    Article  PubMed  PubMed Central  Google Scholar 

  • Akere A, Chen SH, Liu X, Chen Y, Dantu SC, Pandini A, Bhowmik D, Haider S (2020) Structure-based enzyme engineering improves donor-substrate recognition of Arabidopsis thaliana glycosyltransferases. Biochem J 477:2791–2805

    Article  CAS  PubMed  Google Scholar 

  • Ardèvol A, Rovira C (2015) Reaction mechanisms in carbohydrate-active enzymes: glycoside hydrolases and glycosyltransferases. insights from ab initio quantum mechanics/molecular mechanics dynamic simulations. J Am Chem Soc 137:7528–7547

    Article  PubMed  Google Scholar 

  • Behroozi P, Baghizadeh A, Saei A, Kharazmi S (2017) Quantitative analysis of uridine diphosphate glycosyltransferase UGT85C2, UGT74G1 and UGT76G1 genes expression in Stevia rebaudiana under different irrigations. Russ J Plant Physiol 64:67–72

    Article  CAS  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blundell TL, Patel S (2004) High-throughput X-ray crystallography for drug discovery. Curr Opin Pharmacol 4:490–496

    Article  CAS  PubMed  Google Scholar 

  • Bowles D, Lim EK, Poppenberger B, Vaistij FE (2006) Glycosyltransferases of lipophilic small molecules. Annu Rev Plant Biol 57:567–597

    Article  CAS  PubMed  Google Scholar 

  • Brandle JE, Telmer PG (2007) Steviol glycoside biosynthesis. Phytochemistry 68:1855–1863

    Article  CAS  PubMed  Google Scholar 

  • Brazier-Hicks M, Offen WA, Gershater MC, Revett TJ, Lim EK, Bowles DJ, Davies GJ, Edwards R (2007) Characterization and engineering of the bifunctional N- and O-glucosyltransferase involved in xenobiotic metabolism in plants. Proc Natl Acad Sci U S A 104:20238–20243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breton C, Snajdrová L, Jeanneau C, Koca J, Imberty A (2006) Structures and mechanisms of glycosyltransferases. Glycobiology 16:29R-37R

    Article  CAS  PubMed  Google Scholar 

  • Breton C, Fournel-Gigleux S, Palcic MM (2012) Recent structures, evolution and mechanisms of glycosyltransferases. Curr Opin Struct Biol 22:540–549

    Article  CAS  PubMed  Google Scholar 

  • Brockhausen I (2014) Crossroads between bacterial and mammalian glycosyltransferases. Front Immunol 5:492

    Article  PubMed  PubMed Central  Google Scholar 

  • Caputi L, Malnoy M, Goremykin V, Nikiforova S, Martens S (2012) A genome-wide phylogenetic reconstruction of family 1 UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land. Plant J 69:1030–1042

    Article  CAS  PubMed  Google Scholar 

  • Ceunen S, Geuns JM (2013) Steviol glycosides: chemical diversity, metabolism, and function. J Nat Prod 76:1201–1228

    Article  CAS  PubMed  Google Scholar 

  • Chang A, Singh S, Phillips GN, Thorson JS (2011) Glycosyltransferase structural biology and its role in the design of catalysts for glycosylation. Curr Opin Biotechnol 22:800–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coutinho PM, Deleury E, Davies GJ, Henrissat B (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328:307–317

    Article  CAS  PubMed  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curry S (2015) Structural biology: a century-long journey into an unseen world. Interdiscip Sci Rev 40:308–328

    Article  PubMed  PubMed Central  Google Scholar 

  • Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, Ryals J (1994) A central role of salicylic acid in plant disease resistance. Science 266:1247–1250

    Article  CAS  PubMed  Google Scholar 

  • Drickamer MET (2011) Introduction to glycobiology. Oxford University Press, Oxford

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Flower TG, Hurley JH (2021) Crystallographic molecular replacement using an in silico-generated search model of SARS-CoV-2 ORF8. Protein Sci 30:728–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gachon CM, Langlois-Meurinne M, Saindrenan P (2005) Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci 10:542–549

    Article  CAS  PubMed  Google Scholar 

  • George Thompson AM, Iancu CV, Neet KE, Dean JV, Choe JY (2017) Differences in salicylic acid glucose conjugations by UGT74F1 and UGT74F2 from Arabidopsis thaliana. Sci Rep 7:46629

    Article  PubMed  PubMed Central  Google Scholar 

  • Harborne JB, Corner JJ (1961) The cinnamic esters of Antirrhinum majus flowers. Arch Biochem Biophys 92:192–193

    Article  CAS  PubMed  Google Scholar 

  • He Y, Ahmad D, Zhang X, Zhang Y, Wu L, Jiang P, Ma H (2018) Genome-wide analysis of family-1 UDP glycosyltransferases (UGT) and identification of UGT genes for FHB resistance in wheat (Triticum aestivum L.). BMC Plant Biol 18:67

    Article  PubMed  PubMed Central  Google Scholar 

  • He JB, Zhao P, Hu ZM, Liu S, Kuang Y, Zhang M, Li B, Yun CH, Qiao X, Ye M (2019) Molecular and structural characterization of a promiscuous C-Glycosyltransferase from Trollius chinensis. Angew Chem Int Ed Engl 58:11513–11520

    Article  CAS  PubMed  Google Scholar 

  • Hellfritsch C, Brockhoff A, Stähler F, Meyerhof W, Hofmann T (2012) Human psychometric and taste receptor responses to steviol glycosides. J Agric Food Chem 60:6782–6793

    Article  CAS  PubMed  Google Scholar 

  • Hiromoto T, Honjo E, Noda N, Tamada T, Kazuma K, Suzuki M, Blaber M, Kuroki R (2015) Structural basis for acceptor-substrate recognition of UDP-glucose: anthocyanidin 3-O-glucosyltransferase from Clitoria ternatea. Protein Sci 24:395–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu TM, Welner DH, Russ ZN, Cervantes B, Prathuri RL, Adams PD, Dueber JE (2018) Employing a biochemical protecting group for a sustainable indigo dyeing strategy. Nat Chem Biol 14:256–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, He Y, Jiang R, Deng Z, Long F (2022) Functional and structural dissection of a plant steroid 3-O-glycosyltransferase facilitated the engineering enhancement of sugar donor promiscuity. ACS Catal 12:2927–2937

    Article  CAS  Google Scholar 

  • Hughes J, Hughes MA (1994) Multiple secondary plant product UDP-glucose glucosyltransferase genes expressed in cassava (Manihot esculenta Crantz) cotyledons. DNA Seq 5:41–49

    Article  CAS  PubMed  Google Scholar 

  • Jones P, Vogt T (2001) Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta 213:164–174

    Article  CAS  PubMed  Google Scholar 

  • Joshi R, Trinkl J, Haugeneder A, Härtl K, Franz-Oberdorf K, Giri A, Hoffmann T, Schwab W (2019) Semirational design and engineering of grapevine glucosyltransferases for enhanced activity and modified product selectivity. Glycobiology 29:765–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan H, Saeedi M, Nabavi SM, Mubarak MS, Bishayee A (2019) Glycosides from medicinal plants as potential anticancer agents: emerging trends towards future drugs. Curr Med Chem 26:2389–2406

    Article  CAS  PubMed  Google Scholar 

  • Kren V, Martínková L (2001) Glycosides in medicine: “The role of glycosidic residue in biological activity.” Curr Med Chem 8:1303–1328

    Article  CAS  PubMed  Google Scholar 

  • Krissinel E, Henrick K (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr 60:2256–2268

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Sangwan R, Mishra S, Sabir F, Sangwan NS (2012) “In silico” motif diversity analysis of the glycon preferentiality of plant secondary metabolic glycosyltransferases. Plant Omics 5:200–210

    CAS  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555

    Article  CAS  PubMed  Google Scholar 

  • Lee SG, Salomon E, Yu O, Jez JM (2019) Molecular basis for branched steviol glucoside biosynthesis. Proc Natl Acad Sci U S A 116:13131–13136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesk AM (1995) NAD-binding domains of dehydrogenases. Curr Opin Struct Biol 5:775–783

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Baldauf S, Lim EK, Bowles DJ (2001) Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. J Biol Chem 276:4338–4343

    Article  CAS  PubMed  Google Scholar 

  • Li L, Modolo LV, Escamilla-Trevino LL, Achnine L, Dixon RA, Wang X (2007) Crystal structure of Medicago truncatula UGT85H2–insights into the structural basis of a multifunctional (iso)flavonoid glycosyltransferase. J Mol Biol 370:951–963

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yang J, Mu S, Shang N, Liu C, Zhu Y, Cai Y, Liu P, Lin J, Liu W, Sun Y, Ma Y (2020) Efficient O-glycosylation of triterpenes enabled by protein engineering of plant glycosyltransferase UGT74AC1. ACS Catal 10:3629–3639

    Article  CAS  Google Scholar 

  • Li J, Qu G, Shang N, Chen P, Men Y, Liu W, Mei Z, Sun Y, Sun Z (2021) Near-perfect control of the regioselective glucosylation enabled by rational design of glycosyltransferases. Green Synthesis and Catalysis 2:45–53

    Article  Google Scholar 

  • Liu M, Wang D, Li Y, Li X, Zong G, Fei S, Yang X, Lin J, Wang X, Shen Y (2020a) Crystal structures of the C-glycosyltransferase UGT708C1 from buckwheat provide insights into the mechanism of C-glycosylation. Plant Cell 32:2917–2931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Li J, Sun Y, Zhang P, Wang Y (2020b) Structural insights into the catalytic mechanism of a plant diterpene glycosyltransferase SrUGT76G1. Plant Commun 1:100004

    Article  PubMed  Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490-495

    Article  CAS  PubMed  Google Scholar 

  • Louveau T, Osbourn A (2019) The sweet side of plant-specialized metabolism. Cold Spring Harb Perspect Biol 11:a034744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackenzie PI, Owens IS, Burchell B, Bock KW, Bairoch A, Bélanger A, Fournel-Gigleux S, Green M, Hum DW, Iyanagi T, Lancet D, Louisot P, Magdalou J, Chowdhury JR, Ritter JK, Schachter H, Tephly TR, Tipton KF, Nebert DW (1997) The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics 7:255–269

    Article  CAS  PubMed  Google Scholar 

  • Madeira F, Pearce M, Tivey ARN, Basutkar P, Lee J, Edbali O, Madhusoodanan N, Kolesnikov A, Lopez R (2022) Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 50(W1):W276–W279

    Article  PubMed  PubMed Central  Google Scholar 

  • Maharjan R, Fukuda Y, Nakayama T, Hamada H, Ozaki SI, Inoue T (2020a) Crown-ether-mediated crystal structures of the glycosyltransferase PaGT3 from Phytolacca americana. Acta Crystallogr D Struct Biol 76:521–530

    Article  CAS  PubMed  Google Scholar 

  • Maharjan R, Fukuda Y, Shimomura N, Nakayama T, Okimoto Y, Kawakami K, Hamada H, Inoue T, Ozaki SI (2020b) An ambidextrous polyphenol glycosyltransferase. Biochemistry 59:2551–2561

    Article  CAS  PubMed  Google Scholar 

  • Maharjan R, Fukuda Y, Nakayama T, Hamada H, Ozaki SI, Inoue T (2022) Structural basis for substrate recognition in the Phytolacca americana glycosyltransferase PaGT3. Acta Crystallogr D Struct Biol 78:379–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCoy AJ, Sammito MD, Read RJ (2022) Implications of AlphaFold2 for crystallographic phasing by molecular replacement. Acta Crystallogr D Struct Biol 78:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meech R, Hu DG, McKinnon RA, Mubarokah SN, Haines AZ, Nair PC, Rowland A, Mackenzie PI (2019) The UDP-glycosyltransferase (UGT) superfamily: new members, new functions, and novel paradigms. Physiol Rev 99:1153–1222

    Article  CAS  PubMed  Google Scholar 

  • Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ, Finn RD, Bateman A (2021) Pfam: The protein families database in 2021. Nucleic Acids Res 49:D412–D419

    Article  CAS  PubMed  Google Scholar 

  • Modolo LV, Li L, Pan H, Blount JW, Dixon RA, Wang X (2009) Crystal structures of glycosyltransferase UGT78G1 reveal the molecular basis for glycosylation and deglycosylation of (iso)flavonoids. J Mol Biol 392:1292–1302

    Article  CAS  PubMed  Google Scholar 

  • Mohamed AA, Ceunen S, Geuns JM, Van den Ende W, De Ley M (2011) UDP-dependent glycosyltransferases involved in the biosynthesis of steviol glycosides. J Plant Physiol 168:1136–1141

    Article  CAS  PubMed  Google Scholar 

  • Moremen KW, Haltiwanger RS (2019) Emerging structural insights into glycosyltransferase-mediated synthesis of glycans. Nat Chem Biol 15:853–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Offen W, Martinez-Fleites C, Yang M, Kiat-Lim E, Davis BG, Tarling CA, Ford CM, Bowles DJ, Davies GJ (2006) Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO J 25:1396–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsson K, Carlsen S, Semmler A, Simón E, Mikkelsen MD, Møller BL (2016) Microbial production of next-generation stevia sweeteners. Microb Cell Fact 15:207

    Article  PubMed  PubMed Central  Google Scholar 

  • Osmani SA, Bak S, Imberty A, Olsen CE, Møller BL (2008) Catalytic key amino acids and UDP-sugar donor specificity of a plant glucuronosyltransferase, UGT94B1: molecular modeling substantiated by site-specific mutagenesis and biochemical analyses. Plant Physiol 148:1295–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osmani SA, Bak S, Møller BL (2009) Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling. Phytochemistry 70:325–347

    Article  CAS  PubMed  Google Scholar 

  • Pandey RP, Parajuli P, Koirala N, Lee JH, Park YI, Sohng JK (2014) Glucosylation of isoflavonoids in engineered Escherichia coli. Mol Cells 37:172–177

    Article  PubMed  PubMed Central  Google Scholar 

  • Prakash I, Markosyan A, Bunders C (2014) Development of next generation stevia sweetener: rebaudioside M. Foods 3:162–175

    Article  PubMed  PubMed Central  Google Scholar 

  • Ross J, Li Y, Lim E, Bowles DJ (2001) Higher plant glycosyltransferases. Genome Biol 2:1–3004

    Article  Google Scholar 

  • Russo CAM, Selvatti AP (2018) Bootstrap and rogue identification tests for phylogenetic analyses. Mol Biol Evol 35:2327–2333

    Article  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Shao H, He X, Achnine L, Blount JW, Dixon RA, Wang X (2005) Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula. Plant Cell 17:3141–3154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh G, Singh P, Parmar R, Paul N, Vashist R, Swarnkar MK, Kumar A, Singh S, Singh AK, Kumar S, Sharma RK (2017) Molecular dissection of transcriptional reprogramming of steviol glycosides synthesis in leaf tissue during developmental phase transitions in Stevia rebaudiana Bert. Sci Rep 7:11835

    Article  PubMed  PubMed Central  Google Scholar 

  • Taujale R, Venkat A, Huang LC, Zhou Z, Yeung W, Rasheed KM, Li S, Edison AS, Moremen KW, Kannan N (2020) Deep evolutionary analysis reveals the design principles of fold a glycosyltransferases. Elife 9:e54532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taujale R, Zhou Z, Yeung W, Moremen KW, Li S, Kannan N (2021) Mapping the glycosyltransferase fold landscape using interpretable deep learning. Nat Commun 12:5656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teze D, Coines J, Fredslund F, Dubey KD, Bidart GN, Adams PD, Dueber JE, Svensson B, Rovira C, Welner DH (2021) O-/N-/S-specificity in glycosyltransferase catalysis: from mechanistic understanding to engineering. ACS Catalysis 11:1810–1815

    Article  CAS  Google Scholar 

  • Tiwari P, Sangwan RS, Sangwan NS (2016) Plant secondary metabolism linked glycosyltransferases: an update on expanding knowledge and scopes. Biotechnol Adv 34:714–739

    Article  CAS  PubMed  Google Scholar 

  • Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A, Žídek A, Green T, Tunyasuvunakool K, Petersen S, Jumper J, Clancy E, Green R, Vora A, Lutfi M, Figurnov M, Cowie A, Hobbs N, Kohli P, Kleywegt G, Birney E, Hassabis D, Velankar S (2022) AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 50:D439–D444

    Article  CAS  PubMed  Google Scholar 

  • Vetter J (2000) Plant cyanogenic glycosides. Toxicon 38:11–36

    Article  CAS  PubMed  Google Scholar 

  • Vrielink A, Rüger W, Driessen HP, Freemont PS (1994) Crystal structure of the DNA modifying enzyme beta-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose. EMBO J 13:3413–3422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X (2009) Structure, mechanism and engineering of plant natural product glycosyltransferases. FEBS Lett 583:3303–3309

    Article  CAS  PubMed  Google Scholar 

  • Wetterhorn KM, Newmister SA, Caniza RK, Busman M, McCormick SP, Berthiller F, Adam G, Rayment I (2016) Crystal structure of Os79 (Os04g0206600) from Oryza sativa: A UDP-glucosyltransferase involved in the detoxification of deoxynivalenol. Biochemistry 55:6175–6186

    Article  CAS  PubMed  Google Scholar 

  • Wetterhorn KM, Gabardi K, Michlmayr H, Malachova A, Busman M, McCormick SP, Berthiller F, Adam G, Rayment I (2017) Determinants and expansion of specificity in a trichothecene UDP-glucosyltransferase from Oryza sativa. Biochemistry 56:6585–6596

    Article  CAS  PubMed  Google Scholar 

  • Williams GJ, Zhang C, Thorson JS (2007) Expanding the promiscuity of a natural-product glycosyltransferase by directed evolution. Nat Chem Biol 3:657–662

    Article  CAS  PubMed  Google Scholar 

  • Wilson AE, Tian L (2019) Phylogenomic analysis of UDP-dependent glycosyltransferases provides insights into the evolutionary landscape of glycosylation in plant metabolism. Plant J 100:1273–1288

    Article  CAS  PubMed  Google Scholar 

  • Wilson AE, Matel HD, Tian L (2016) Glucose ester enabled acylation in plant specialized metabolism. Phytochem Rev 15:1057–1074

    Article  CAS  Google Scholar 

  • Wilson AE, Feng X, Ono NN, Holland D, Amir R, Tian L (2017) Characterization of a UGT84 family glycosyltransferase provides new insights into substrate binding and reactivity of galloylglucose ester-forming UGTs. Biochemistry 56:6389–6400

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Liu X, Xu K, Zhang B (2020a) Genome-wide characterization, evolution and expression profiling of UDP-glycosyltransferase family in pomelo (Citrus grandis) fruit. BMC Plant Biol 20:459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Q, La Hovary C, Chen HY, Li X, Eng H, Vallejo V, Qu R, Dewey RE (2020b) An efficient stevia rebaudiana transformation system and in vitro enzyme assays reveal novel insights into UGT76G1 function. Sci Rep 10:3773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang T, Zhang J, Ke D, Yang W, Tang M, Jiang J, Cheng G, Li J, Cheng W, Wei Y, Li Q, Naismith JH, Zhu X (2019) Hydrophobic recognition allows the glycosyltransferase UGT76G1 to catalyze its substrate in two orientations. Nat Commun 10:3214

    Article  PubMed  PubMed Central  Google Scholar 

  • Yonekura-Sakakibara K, Hanada K (2011) An evolutionary view of functional diversity in family 1 glycosyltransferases. Plant J 66:182–193

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Zhang Z, Zhang L, Wang J, Wu C (2020) Glycosyltransferase GT1 family: Phylogenetic distribution, substrates coverage, and representative structural features. Comput Struct Biotechnol J 18:1383–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Tang M, Chen Y, Ke D, Zhou J, Xu X, Yang W, He J, Dong H, Wei Y, Naismith JH, Lin Y, Zhu X, Cheng W (2021) Catalytic flexibility of rice glycosyltransferase OsUGT91C1 for the production of palatable steviol glycosides. Nat Commun 12:7030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Gong M, Lv X, Liu Y, Li J, Du G, Liu L (2021) Metabolic engineering for the synthesis of steviol glycosides: current status and future prospects. Appl Microbiol Biotechnol 105:5367–5381

    Article  CAS  PubMed  Google Scholar 

  • Zoete V, Grosdidier A, Michielin O (2009) Docking, virtual high throughput screening and in silico fragment-based drug design. J Cell Mol Med 13:238–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zong G, Fei S, Liu X, Li J, Gao Y, Yang X, Wang X, Shen Y (2019) Crystal structures of rhamnosyltransferase UGT89C1 from Arabidopsis thaliana reveal the molecular basis of sugar donor specificity for UDP-β-l-rhamnose and rhamnosylation mechanism. Plant J 99:257–269

    CAS  PubMed  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Molecules as documents of evolutionary history. J Theor Biol 8:357–366

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the North Carolina Biotechnology Center (NCBC) (Project Number: A20-0079), University of North Carolina Wilmington, and Arthur C. Neish Young Investigator Award (Phytochemical Society of North America).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon Goo Lee.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aubuchon, L.N., Schmiederer, K. & Lee, S.G. Comparative structural analysis of plant uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs) in plant specialized metabolism: structures of plant UGTs for biosynthesis of steviol glycosides. Phytochem Rev 22, 385–406 (2023). https://doi.org/10.1007/s11101-023-09857-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-023-09857-0

Keywords

Navigation