Skip to main content

Advertisement

Log in

Achievements in the production of bioplastics from microalgae

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Plastic waste generation has been increasing considerably, which bring about several environmental problems such as microplastics. In addition to the plastic pollution, the reduction in the use of petrochemical plastics is a key aspect to enhance sustainability. To alleviate the problems, the development of an innovative solution is rightly expected. Bioplastics are an alternative for conventional petrochemical plastics, recently gaining in a lot of attention. Microalgae can be an attractive source for the production of bioplastics given that they have a very distinctive growth yield in comparison to typical lignocellulosic biomass. Therefore, the employment of microalgae to produce bioplastics affords a golden opportunity to enhance sustainability of plastic usage. Given recent scientific research achievements in bioplastic production from microalgae, a review of the achievements is required. In this regard, this study was aimed at providing a review on the production of bioplastics using microalgae, which laid great emphasis on determining the current state of microalgal bioplastic production technologies and offering potential processes and applications. The prospect of bioplastic production based on microalgae is also discussed, and important points and challenges facing further research into the microalgal bioplastics are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABE:

Acetone, butanol, and ethanol

LCA:

Life cycle assessment

PBAT:

Polybutylene adipate terephthalate

PBR:

Photobioreactor

PBS:

Polybutylene succinate

PE:

Polyethylene

PHA:

Polyhydroxyalkanoate

PHB:

Polyhydroxybutyrate

PLA:

Polylactic acid

PP:

Polypropylene

PVA:

Polyvinyl alcohol

PVC:

Polyvinyl chloride

TEA:

Techno-economic analysis

References

  • Abdo SM, Ali GH (2019) Analysis of polyhydroxybutrate and bioplastic production from microalgae. Bull Natl Res Cent 43:97

    Article  Google Scholar 

  • Abdul-Latif N-IS, Ong MY, Nomanbhay S, Salman B, Show PL (2020) Estimation of carbon dioxide (CO2) reduction by utilization of algal biomass bioplastic in Malaysia using carbon emission pinch analysis (CEPA). Bioengineered 11:154–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agnew DE, Pfleger BF (2013) Synthetic biology strategies for synthesizing polyhydroxyalkanoates from unrelated carbon sources. Chem Eng Sci 103:58–67

    Article  CAS  PubMed  Google Scholar 

  • Akaraonye E, Keshavarz T, Roy I (2010) Production of polyhydroxyalkanoates: the future green materials of choice. J Chem Technol Biotechnol 85:732–743

    Article  CAS  Google Scholar 

  • Anbukarasu P, Sauvageau D, Elias A (2015) Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting. Sci Rep 5:17884

    Article  PubMed  PubMed Central  Google Scholar 

  • Balaji S, Gopi K, Muthuvelan B (2013) A review on production of poly β hydroxybutyrates from cyanobacteria for the production of bio plastics. Algal Res 2:278–285

    Article  Google Scholar 

  • Barghini A, Ivanova VI, Imam SH, Chiellini E (2010) Poly-(ε-caprolactone) (PCL) and poly(hydroxy-butyrate) (PHB) blends containing seaweed fibers: morphology and thermal-mechanical properties. J Polym Sci A Polym Chem 48:5282–5288

    Article  CAS  Google Scholar 

  • Beckstrom BD, Wilson MH, Crocker M, Quinn JC (2020) Bioplastic feedstock production from microalgae with fuel co-products: a techno-economic and life cycle impact assessment. Algal Res 46:101769

    Article  Google Scholar 

  • Behera K, Chang Y-H, Chiu F-C (2021) Manufacturing poly(butylene adipate-co-terephthalate)/high density polyethylene blend-based nanocomposites with enhanced burning anti-dripping and physical properties — effects of carbon nanofillers addition. Compos B Eng 217:108878

    Article  CAS  Google Scholar 

  • Ben Halima N (2016) Poly(vinyl alcohol): review of its promising applications and insights into biodegradation. RSC Adv 6:39823–39832

    Article  CAS  Google Scholar 

  • Bhati R, Mallick N (2015) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production by the diazotrophic cyanobacterium Nostoc muscorum Agardh: process optimization and polymer characterization. Algal Res 7:78–85

    Article  Google Scholar 

  • Bi S, Tan B, Soule JL, Sobkowicz MJ (2018) Enzymatic degradation of poly (butylene succinate-co-hexamethylene succinate). Polym Degrad Stab 155:9–14

    Article  CAS  Google Scholar 

  • Bioplastics EU (2016) What are bioplastics? European Bioplastics, Berlin, Germany

    Google Scholar 

  • Brányiková I, Maršálková B, Doucha J, Brányik T, Bišová K, Zachleder V, Vítová M (2011) Microalgae—novel highly efficient starch producers. Biotechnol Bioeng 108:766–776

    Article  PubMed  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    Article  CAS  Google Scholar 

  • Bulota M, Budtova T (2015) PLA/algae composites: morphology and mechanical properties. Compos Part a: Appl Sci Manuf 73:109–115

    Article  CAS  Google Scholar 

  • Bussa M, Eisen A, Zollfrank C, Röder H (2019) Life cycle assessment of microalgae products: State of the art and their potential for the production of polylactid acid. J Clean Prod 213:1299–1312

    Article  CAS  Google Scholar 

  • Chai WS et al (2021) A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J Clean Prod 296:126589

    Article  CAS  Google Scholar 

  • Chai WS, Tan WG, Halimatul Munawaroh HS, Gupta VK, Ho S-H, Show PL (2021) Multifaceted roles of microalgae in the application of wastewater biotreatment: a review. Environ Pollut 269:116236

    Article  CAS  PubMed  Google Scholar 

  • Chakravarty P, Mhaisalkar V, Chakrabarti T (2010) Study on poly-hydroxyalkanoate (PHA) production in pilot scale continuous mode wastewater treatment system. Bioresour Technol 101:2896–2899

    Article  CAS  PubMed  Google Scholar 

  • Chew KW et al (2017) Microalgae biorefinery: high value products perspectives. Bioresour Technol 229:53–62

    Article  CAS  PubMed  Google Scholar 

  • Chiellini E, Cinelli P, Ilieva VI, Martera M (2008) Biodegradable thermoplastic composites based on polyvinyl alcohol and algae. Biomacromol 9:1007–1013

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Ciapponi R, Turri S, Levi M (2019) Mechanical reinforcement by microalgal biofiller in novel thermoplastic biocompounds from plasticized gluten. Materials 12:1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coelho VC, da Silva CK, Terra AL, Costa JAV, de Morais MG (2015) Polyhydroxybutyrate production by Spirulina sp. LEB 18 grown under different nutrient concentrations. Afr J Microbiol Res 9:1586–1594

    Article  CAS  Google Scholar 

  • Conn RE, Kolstad JJ, Borzelleca JF, Dixler DS, Filer LJ, Ladu BN, Pariza MW (1995) Safety assessment of polylactide (PLA) for use as a food-contact polymer. Food Chem Toxicol 33:273–283

    Article  CAS  PubMed  Google Scholar 

  • Costa SS et al (2018a) Influence of nitrogen on growth, biomass composition, production, and properties of polyhydroxyalkanoates (PHAs) by microalgae. Int J Biol Macromol 116:552–562

    Article  CAS  PubMed  Google Scholar 

  • Costa SS, Miranda AL, Assis DdJ, Souza CO, de Morais MG, Costa JAV, Druzian JI (2018b) Efficacy of Spirulina sp. polyhydroxyalkanoates extraction methods and influence on polymer properties and composition. Algal Res 33:231–238

    Article  Google Scholar 

  • Costa SS, Miranda AL, de Morais MG, Costa JAV, Druzian JI (2019) Microalgae as source of polyhydroxyalkanoates (PHAs) — a review. Int J Biol Macromol 131:536–547

    Article  CAS  PubMed  Google Scholar 

  • Das SK, Sathish A, Stanley J (2018) Production of biofuel and bioplastic from Chlorella pyrenoidosa. Mater Today Proc 5:16774–16781

    Article  CAS  Google Scholar 

  • de Jesus CS et al (2018) Outdoor pilot-scale cultivation of Spirulina sp. LEB-18 in different geographic locations for evaluating its growth and chemical composition. Bioresour Technol 256:86–94

    Article  PubMed  Google Scholar 

  • Demirbas A, Fatih Demirbas M (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 52:163–170

    Article  Google Scholar 

  • Devadas VV et al (2021) Algae biopolymer towards sustainable circular economy. Bioresour Technol 325:124702

    Article  CAS  PubMed  Google Scholar 

  • Di Caprio F, Visca A, Altimari P, Toro L, Masciocchi B, Iaquaniello G, Pagnanelli F (2016) Two stage process of microalgae cultivation for starch and carotenoid production. Chem Eng Trans 49:415–420

    Google Scholar 

  • Dragone G, Fernandes BD, Vicente AA, Teixeira JA (2010) Third generation biofuels from microalgae. In: Mendez-Vilas A (ed) Current Research. Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, Formatex, pp 1355–1366

    Google Scholar 

  • Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12:1841–1846

    Article  CAS  Google Scholar 

  • Ellis JT, Hengge NN, Sims RC, Miller CD (2012) Acetone, butanol, and ethanol production from wastewater algae. Bioresour Technol 111:491–495

    Article  CAS  PubMed  Google Scholar 

  • Fabra MJ, Martínez-Sanz M, Gómez-Mascaraque LG, Gavara R, López-Rubio A (2018) Structural and physicochemical characterization of thermoplastic corn starch films containing microalgae. Carbohydr Polym 186:184–191

    Article  CAS  PubMed  Google Scholar 

  • Fiorese ML, Freitas F, Pais J, Ramos AM, de Aragão GMF, Reis MAM (2009) Recovery of polyhydroxybutyrate (PHB) from Cupriavidus necator biomass by solvent extraction with 1,2-propylene carbonate. Eng Life Sci 9:454–461

    Article  CAS  Google Scholar 

  • Garside M (2020) Production of plastics worldwide from 1950 to 2019. Statista,

  • Ghatnekar MS, Pai JS, Ganesh M (2002) Production and recovery of poly-3-hydroxybutyrate from Methylobacterium sp V49. J Chem Technol Biotechnol 77:444–448

    Article  CAS  Google Scholar 

  • Gifuni I, Olivieri G, Krauss IR, D’Errico G, Pollio A, Marzocchella A (2017) Microalgae as new sources of starch: isolation and characterization of microalgal starch granules. Chem Eng Trans 57:1423–1428

    Google Scholar 

  • Gumel AM, Annuar MSM, Chisti Y (2013) Recent advances in the production, recovery and applications of polyhydroxyalkanoates. J Polym Environ 21:580–605

    Article  CAS  Google Scholar 

  • Hempel F et al (2011) Microalgae as bioreactors for bioplastic production. Microb Cell Fact 10:81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho S-H et al (2019) N-doped graphitic biochars from C-phycocyanin extracted Spirulina residue for catalytic persulfate activation toward nonradical disinfection and organic oxidation. Water Res 159:77–86

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Ma X, Chen C (2012) A study on experimental characteristic of microwave-assisted pyrolysis of microalgae. Bioresour Technol 107:487–493

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Su T, Pan W, Li P, Wang Z (2017) Difference in solid-state properties and enzymatic degradation of three kinds of poly(butylene succinate)/cellulose blends. RSC Adv 7:35496–35503

    Article  CAS  Google Scholar 

  • Jain N, Singh VK, Chauhan S (2017) A review on mechanical and water absorption properties of polyvinyl alcohol based composites/films. J Mech Behav Mater 26:213–222

    Article  CAS  Google Scholar 

  • Jambeck JR et al (2015) Plastic waste inputs from land into the ocean. Science 347:768–771

    Article  CAS  PubMed  Google Scholar 

  • Jang YH, Han SO, Sim IN, Kim H-I (2013) Pretreatment effects of seaweed on the thermal and mechanical properties of seaweed/polypropylene biocomposites. Compos Part a: Appl Sci Manuf 47:83–90

    Article  CAS  Google Scholar 

  • Jendrossek D, Handrick R (2002) Microbial degradation of polyhydroxyalkanoates. Annu Rev Microbiol 56:403–432

    Article  CAS  PubMed  Google Scholar 

  • Jian J, Xiangbin Z, Xianbo H (2020) An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)–PBAT. Adv Ind Eng Polym Res 3:19–26

    Google Scholar 

  • Johnsson N, Steuer F (2018) Bioplastic material from microalgae: extraction of starch and PHA from microalgae to create a bioplastic material. KTH Royal Institute of Technology, Stockholm, Sweden

    Google Scholar 

  • Jung J-M, Oh J-I, Baek K, Lee J, Kwon EE (2018) Biodiesel production from waste cooking oil using biochar derived from chicken manure as a porous media and catalyst. Energy Convers Manag 165:628–633

    Article  CAS  Google Scholar 

  • Kaparapu J (2018) Polyhydroxyalkanoate (PHA) production by genetically engineered microalgae: a review. J New Biol Rep 7:68–73

    Google Scholar 

  • Kapritchkoff FM et al (2006) Enzymatic recovery and purification of polyhydroxybutyrate produced by Ralstonia eutropha. J Biotechnol 122:453–462

    Article  CAS  PubMed  Google Scholar 

  • Kavitha G, Kurinjimalar C, Sivakumar K, Kaarthik M, Aravind R, Palani P, Rengasamy R (2016) Optimization of polyhydroxybutyrate production utilizing waste water as nutrient source by Botryococcus braunii Kütz using response surface methodology. Int J Biol Macromol 93:534–542

    Article  CAS  PubMed  Google Scholar 

  • Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact 17:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40:607–619

    Article  CAS  Google Scholar 

  • Koenig K, Balakrishnan N, Hermanns S, Langensiepen F, Seide G (2020) Biobased dyes as conductive additives to reduce the diameter of polylactic acid fibers during melt electrospinning. Materials 13:1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koller M, Maršálek L, de Sousa Dias MM, Braunegg G (2017) Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol 37:24–38

    Article  CAS  Google Scholar 

  • Kovalcik A et al (2017) Characterization of polyhydroxyalkanoates produced by Synechocystis salina from digestate supernatant. Int J Biol Macromol 102:497–504

    Article  CAS  PubMed  Google Scholar 

  • Kwon EE, Lee T, Ok YS, Tsang DCW, Park C, Lee J (2018) Effects of calcium carbonate on pyrolysis of sewage sludge. Energy 153:726–731

    Article  CAS  Google Scholar 

  • Kwon EE, Kim S, Lee J (2019) Pyrolysis of waste feedstocks in CO2 for effective energy recovery and waste treatment. J CO2 Util 31:173–180

    Article  CAS  Google Scholar 

  • Lebreton L, Egger M, Slat B (2019) A global mass budget for positively buoyant macroplastic debris in the ocean. Sci Rep 9:12922

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee J, Sarmah AK, Kwon EE (2019a) Chapter 1 - Production and Formation of Biochar. In: Ok YS, Tsang DCW, Bolan N, Novak JM (eds) Biochar from Biomass and Waste. Elsevier, pp 3–18

    Google Scholar 

  • Lee Y, Andrew Lin K-Y, Kwon EE, Lee J (2019b) Renewable routes to monomeric precursors of nylon 66 and nylon 6 from food waste. J Clean Prod 227:624–633

    Article  CAS  Google Scholar 

  • Lee J, Lee Y, Kim S, Kwon EE, Lin K-YA (2021a) Catalytic production of hexamethylenediamine from renewable feedstocks. Korean J Chem Eng 38:1079–1086

    Article  CAS  Google Scholar 

  • Lee N, Kim YT, Lee J (2021b) Recent advances in renewable polymer production from lignin-derived aldehydes. Polymers 13:364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Park H, Han J, Lee J (2021c) Economically-feasible production of a nylon monomer using RANEY® catalysts. React Chem Eng 6:225–234

    Article  CAS  Google Scholar 

  • Low SS et al (2021) Microalgae cultivation in palm oil mill effluent (POME) treatment and biofuel production. Sustainability 13:3247

    Article  CAS  Google Scholar 

  • Lunt J (1998) Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stab 59:145–152

    Article  CAS  Google Scholar 

  • Mallick N, Gupta S, Panda B, Sen R (2007) Process optimization for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-polymer production by Nostoc muscorum. Biochem Eng J 37:125–130

    Article  CAS  Google Scholar 

  • Mathiot C, Ponge P, Gallard B, Sassi J-F, Delrue F, Le Moigne N (2019) Microalgae starch-based bioplastics: screening of ten strains and plasticization of unfractionated microalgae by extrusion. Carbohydr Polym 208:142–151

    Article  CAS  PubMed  Google Scholar 

  • Medeiros DL, Sales EA, Kiperstok A (2015) Energy production from microalgae biomass: carbon footprint and energy balance. J Clean Prod 96:493–500

    Article  Google Scholar 

  • Mendhulkar VD, Shetye LA (2017) Synthesis of biodegradable polymer polyhydroxyalkanoate (PHA) in cyanobacteria Synechococcus elongates under mixotrophic nitrogen- and phosphate-mediated stress conditions. Ind Biotechnol 13:85–93

    Article  CAS  Google Scholar 

  • Middelberg APJ (1995) Process-scale disruption of microorganisms. Biotechnol Adv 13:491–551

    Article  CAS  PubMed  Google Scholar 

  • Monshupanee T, Nimdach P, Incharoensakdi A (2016) Two-stage (photoautotrophy and heterotrophy) cultivation enables efficient production of bioplastic poly-3-hydroxybutyrate in auto-sedimenting cyanobacterium. Sci Rep 6:37121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neto JM, Komesu A, da Silva Martins LH, Gonçalves VOO, de Oliveira JAR, Rai M (2019) Third generation biofuels: an overview. In: Rai M, Ingle AP (eds) Sustainable Bioenergy. Elsevier, pp 283–298

    Chapter  Google Scholar 

  • Nishioka M, Nakai K, Miyake M, Asada Y, Taya M (2001) Production of poly-β-hydroxybutyrate by thermophilic cyanobacterium, Synechococcus sp. MA19, under phosphate-limited conditions. Biotechnol Lett 23:1095–1099

    Article  CAS  Google Scholar 

  • Okoro V, Azimov U, Munoz J, Hernandez HH, Phan AN (2019) Microalgae cultivation and harvesting: growth performance and use of flocculants - a review. Renew Sust Energ Rev 115:109364

    Article  CAS  Google Scholar 

  • Onen Cinar S, Chong ZK, Kucuker MA, Wieczorek N, Cengiz U, Kuchta K (2020) Bioplastic production from microalgae: a review. Int J Environ Res Public Health 17:3842

    Article  PubMed  PubMed Central  Google Scholar 

  • Osanai T et al (2013) Increased bioplastic production with an RNA polymerase sigma factor sigE during nitrogen starvation in Synechocystis sp. PCC 6803. DNA Res 20:525–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otsuki T, Zhang F, Kabeya H, Hirotsu T (2004) Synthesis and tensile properties of a novel composite of Chlorella and polyethylene. J Appl Polym Sci 92:812–816

    Article  CAS  Google Scholar 

  • Panda B, Jain P, Sharma L, Mallick N (2006) Optimization of cultural and nutritional conditions for accumulation of poly-β-hydroxybutyrate in Synechocystis sp. PCC 6803. Bioresour Technol 97:1296–1301

    Article  CAS  PubMed  Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25

    Article  CAS  PubMed  Google Scholar 

  • PlasticsEurope, (2020) Plastics - the Facts 2020. PlasticsEurope, Brussels, Belgium

    Google Scholar 

  • Quinn JC, Davis R (2015) The potentials and challenges of algae based biofuels: a review of the techno-economic, life cycle, and resource assessment modeling. Bioresour Technol 184:444–452

    Article  CAS  PubMed  Google Scholar 

  • Rahimi A, García JM (2017) Chemical recycling of waste plastics for new materials production. Nat Rev Chem 1:0046

    Article  Google Scholar 

  • Rahman A, Miller CD (2017) Microalgae as a source of bioplastics. In: Rastogi RP, Madamwar D, Pandey A (eds) Algal Green Chemistry. Elsevier, Amsterdam, pp 121–138

    Chapter  Google Scholar 

  • Rahman A et al (2015) Polyhydroxybutyrate production using a wastewater microalgae based media. Algal Res 8:95–98

    Article  Google Scholar 

  • Rahman A, Sarkar A, Yadav OP, Achari G, Slobodnik J (2021) Potential human health risks due to environmental exposure to nano- and microplastics and knowledge gaps: a scoping review. Sci Total Environ 757:143872

    Article  CAS  PubMed  Google Scholar 

  • Rai PK, Lee J, Brown RJC, Kim K-H (2021) Environmental fate, ecotoxicity biomarkers, and potential health effects of micro- and nano-scale plastic contamination. J Hazard Mater 403:123910

    Article  CAS  PubMed  Google Scholar 

  • Rai PK, Lee J, Brown RJC, Kim K-H (2021) Micro- and nano-plastic pollution: behavior, microbial ecology, and remediation technologies. J Clean Prod 291:125240

    Article  CAS  Google Scholar 

  • Rehm BHA (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8:578–592

    Article  CAS  PubMed  Google Scholar 

  • Riedel SL, Brigham CJ, Budde CF, Bader J, Rha C, Stahl U, Sinskey AJ (2013) Recovery of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from Ralstonia eutropha cultures with non-halogenated solvents. Biotechnol Bioeng 110:461–470

    Article  CAS  PubMed  Google Scholar 

  • Ritchie H, Roser M (2018) Plastic Pollution. https://ourworldindata.org/plastic-pollution. Accessed August 26th 2021

  • Sabathini HA, Windiani L, Dianursanti Gozan M (2018) Mechanical physicial properties of Chlorella-PVA based bioplastic with ultrasonic homogenizer. E3S Web Conf 67:03046

    Article  CAS  Google Scholar 

  • Salh SH, Raswl DA (2018) Thermal stability of polymer composite films based on polyvinyl alcohol doped with different fillers. Open Access J Phys 2:5–10

    Google Scholar 

  • Samantaray S, Mallick N (2015) Impact of various stress conditions on poly-β-hydroxybutyrate (PHB) accumulation in Aulosira fertilissima CCC 444. Curr Biotechnol 4:366–372

    Article  CAS  Google Scholar 

  • Sathish A, Sims RC (2012) Biodiesel from mixed culture algae via a wet lipid extraction procedure. Bioresour Technol 118:643–647

    Article  CAS  PubMed  Google Scholar 

  • Sathish A, Marlar T, Sims RC (2015) Optimization of a wet microalgal lipid extraction procedure for improved lipid recovery for biofuel and bioproduct production. Bioresour Technol 193:15–24

    Article  CAS  PubMed  Google Scholar 

  • Sekar R, Nair KVK, Rao VNR, Venugopalan VP (2002) Nutrient dynamics and successional changes in a lentic freshwater biofilm. Freshw Biol 47:1893–1907

    Article  Google Scholar 

  • Shaiju P, Dorian B-B, Senthamaraikannan R, Padamati RB (2020) Biodegradation of poly (butylene succinate) (PBS)/stearate modified magnesium-aluminium layered double hydroxide composites under marine conditions prepared via melt compounding. Molecules 25:5766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi B, Wideman G, Wang JH (2012) A new approach of bioCO2 fixation by thermoplastic processing of microalgae. J Polym Environ 20:124–131

    Article  CAS  Google Scholar 

  • Singh AK, Sharma L, Mallick N, Mala J (2017) Progress and challenges in producing polyhydroxyalkanoate biopolymers from cyanobacteria. J Appl Phycol 29:1213–1232

    Article  CAS  Google Scholar 

  • Subramaniam SR, Samykano M, Selvamani SK, Ngui WK, Kadirgama K, Sudhakar K, Idris MS (2019) Preliminary investigations of polylactic acid (PLA) properties. AIP Conf Proc 2059:020038

    Article  Google Scholar 

  • Sudesh K, Taguchi K, Doi Y (2002) Effect of increased PHA synthase activity on polyhydroxyalkanoates biosynthesis in Synechocystis sp. PCC6803. Int J Biol Macromol 30:97–104

    Article  CAS  PubMed  Google Scholar 

  • Suzuki DV, Carter JM, Rodrigues MFA, da Silva ES, Maiorano AE (2008) Purification of polyhydroxybutyrate produced by Burkholderia cepacia IPT64 through a chemical and enzymatic route. World J Microbiol Biotechnol 24:771–775

    Article  CAS  Google Scholar 

  • Tan JS, Lee SY, Chew KW, Lam MK, Lim JW, Ho S-H, Show PL (2020) A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered 11:116–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toh PS, Jau MH, Yew SP, Abed RM, Sudesh K (2008) Comparison of polyhydroxyalkanoates biosynthesis, obilization and the effects on cellular morphology in Spirulina platensis and Synechocystis sp. UNIWG J Biosci 19:21–38

    Google Scholar 

  • Toro C, Reddy MM, Navia R, Rivas M, Misra M, Mohanty AK (2013) Characterization and application in biocomposites of residual microalgal biomass generated in third generation biodiesel. J Polym Environ 21:944–951

    Article  CAS  Google Scholar 

  • Torres S, Navia R, Campbell Murdy R, Cooke P, Misra M, Mohanty AK (2015) Green composites from residual microalgae biomass and poly(butylene adipate-co-terephthalate): processing and plasticization. ACS Sustainable Chem Eng 3:614–624

    Article  CAS  Google Scholar 

  • Troschl C (2018) Bioplastic production with cyanobacteria. Universität für Bodenkultur Wien

  • Tsang YF et al (2019) Production of bioplastic through food waste valorization. Environ Int 127:625–644

    Article  CAS  PubMed  Google Scholar 

  • Udayakumar GP et al (2021) Biopolymers and composites: properties, characterization and their applications in food, medical and pharmaceutical industries. J Environ Chem Eng 9:105322

    Article  CAS  Google Scholar 

  • Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energy 2:012701

    Article  Google Scholar 

  • Uggetti E, García J, Álvarez JA, García-Galán MJ (2018) Start-up of a microalgae-based treatment system within the biorefinery concept: from wastewater to bioproducts. Water Sci Technol 78:114–124

    Article  CAS  PubMed  Google Scholar 

  • Vahabi H et al (2019) Thermal stability and flammability behavior of poly(3-hydroxybutyrate) (PHB) based composites. Materials 12:2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Mandal A, Ayton E, Hunt R, Zeller MA, Sharma S (2016) Modification of protein rich algal-biomass to form bioplastics and odor removal. In: Singh Dhillon G (ed) Protein Byproducts. Academic Press, pp 107–117

    Chapter  Google Scholar 

  • Zeller MA, Hunt R, Jones A, Sharma S (2013) Bioplastics and their thermoplastic blends from Spirulina and Chlorella microalgae. J Appl Polym Sci 130:3263–3275

    Article  CAS  Google Scholar 

  • Zhang F, Kabeya H, Kitagawa R, Hirotsu T, Yamashita M, Otsuki T (1999) Preparation and characterization of a novel polyethylene−Chlorella composite. Chem Mater 11:1952–1956

    Article  CAS  Google Scholar 

  • Zhang F, Endo T, Kitagawa R, Kabeya H, Hirotsu T (2000a) Synthesis and characterization of a novel blend of polypropylene with Chlorella. J Mater Chem 10:2666–2672

    Article  CAS  Google Scholar 

  • Zhang F, Kabeya H, Kitagawa R, Hirotsu T, Yamashita M, Otsuki T (2000b) An exploratory research of PVC-Chlorella composite material (PCCM) as effective utilization of Chlorella biologically fixing CO2. J Mater Sci 35:2603–2609

    Article  CAS  Google Scholar 

  • Zhang F, Kabeya H, Kitagawa R, Hirotsu T, Yamashita M, Otsuki T (2000c) A novel polyethylene–chlorella composite. I. Characterization of chlorella biologically fixing CO2. J Appl Polym Sci 77:2278–2284

    Article  CAS  Google Scholar 

  • Zhang C, Wang C, Cao G, Wang D, Ho S-H (2020) A sustainable solution to plastics pollution: an eco-friendly bioplastic film production from high-salt contained Spirulina sp residues. J Hazard Mater 388:121773

    Article  CAS  PubMed  Google Scholar 

  • Zhu N, Ye M, Shi D, Chen M (2017) Reactive compatibilization of biodegradable poly(butylene succinate)/Spirulina microalgae composites. Macromol Res 25:165–171

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A4A1031357). This work was also supported by C1 Gas Refinery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2015M3D3A1A01064899).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jechan Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, YK., Lee, J. Achievements in the production of bioplastics from microalgae. Phytochem Rev 22, 1147–1165 (2023). https://doi.org/10.1007/s11101-021-09788-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-021-09788-8

Keywords

Navigation