Skip to main content

Comprehensive inventory of cannabinoids in Cannabis sativa L.: Can we connect genotype and chemotype?

Abstract

Following decades of tight restrictions, recent legislative adjustments have decriminalized the use of products derived from cannabis (Cannabis sativa L.) in many countries and jurisdictions. This has led to a renewed interest in better understanding the chemical basis of physiological effects attributed to cannabis use. The present review article summarizes our current knowledge regarding the 130 structures of cannabinoids that have been characterized from cannabis extracts to date. We are also providing information on the methods employed for structure determination to help the reader assess the quality of the original structural assignments. Cannabinoid chemical diversity is discussed in the context of current knowledge regarding the enzymes involved in cannabinoid biosynthesis. We briefly assess to what extent cannabinoid levels are determined by the genotype of a given chemovar and discuss the limits of enzymatic control over the cannabinoid profile.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  • Adams R, Pease DC, Clark JH (1940a) Isolation of cannabinol, cannabidiol and quebrachitol from red oil of Minnesota wild hemp. J Am Chem Soc 62:2194–2196

    CAS  Article  Google Scholar 

  • Adams R, Hunt M, Clark JH (1940b) Structure of cannabidiol, a product isolated from the marihuana extract of Minnesota wild hemp. J Am Chem Sec 62:196–200

    CAS  Article  Google Scholar 

  • Adams R, Baker BR, Wearn RB (1940c) Structure of cannabinol. III. Synthesis of cannabinol, 1-hydroxy-3-n-amyl-6,6,9-trimethyl-6-dibenzopyran. J Am Chem Soc 62:2204–2207

    CAS  Article  Google Scholar 

  • Adams R, Cain C, McPhee W, Wearn R (1941) Structure of cannabidiol. XII. Isomerization to tetrahydrocannabinols. J Am Chem Soc 63:2209–2213

    CAS  Article  Google Scholar 

  • Ahmed SA, Ross SA, Slade D et al (2008a) Cannabinoid ester constituents from high-potency Cannabis sativa. J Nat Prod 71:536–542

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Ahmed SA, Ross SA, Slade D et al (2008b) Structure determination and absolute configuration of cannabichromanone derivatives from high potency Cannabis sativa. Tetrahedron Lett 49:6050–6053

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Ahmed SA, Ross SA, Slade D et al (2015) Minor oxygenated cannabinoids from high potency Cannabis sativa L. Phytochemistry 117:194–199

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Aizpurua-Olaizola O, Omar J, Navarro P et al (2014) Identification and quantification of cannabinoids in Cannabis sativa L. plants by high performance liquid chromatography-mass spectrometry. Anal Bioanal Chem 406:7549–7560

    CAS  PubMed  Article  Google Scholar 

  • Appendino G, Giana A, Gibbons S et al (2008) A polar cannabinoid from Cannabis sativa var carma. Nat Prod Commun 3:1934578X0800301207

    Google Scholar 

  • Appendino G, Chianese G, Taglialatela-Scafati O (2011) Cannabinoids: occurrence and medicinal chemistry. Curr Med Chem 18:1085–1099

    CAS  PubMed  Article  Google Scholar 

  • Badowski ME, Yanful PK (2018) Dronabinol oral solution in the management of anorexia and weight loss in AIDS and cancer. Ther Clin Risk Manag 14:643

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Benedetti M, Verrascina I, Pontiggia D et al (2018) Four Arabidopsis berberine bridge enzyme-like proteins are specific oxidases that inactivate the elicitor-active oligogalacturonides. Plant J 94:260–273

    CAS  PubMed  Article  Google Scholar 

  • Bercht CA, Lousberg RJ, Küppers FJ, Salemink CA, Vree TB, Van Rossum JM (1973) Cannabis: VII. Identification of cannabinol methyl ether from hashish. J Chromatogr A 81:163–166

    CAS  Article  Google Scholar 

  • Bercht CAL, Lousberg RJJC, Küppers FJEM, Salemink CA (1974) Cannabicitran: a new naturally occurring tetracyclic diether from lebanese Cannabis sativa. Phytochemistry 13:619–621

    CAS  Article  Google Scholar 

  • Boeren EG, Elsohly MA, Turner CE (1979) Cannabiripsol: a novel Cannabis constituent. Experientia 35:1278–1279

    CAS  PubMed  Article  Google Scholar 

  • Carbone M, Castelluccio F, Daniele A et al (2010) Chemical characterisation of oxidative degradation products of Δ9-THC. Tetrahedron 66:9497–9501

    CAS  Article  Google Scholar 

  • Carter CJ, Thornburg RW (2004) Tobacco nectarin V is a flavin-containing berberine bridge enzyme-like protein with glucose oxidase activity. Plant Physiol 134:460–469

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Cascio MG, Gauson LA, Stevenson LA et al (2010) Evidence that the plant cannabinoid cannabigerol is a highly potent alpha2-adrenoceptor agonist and moderately potent 5HT1A receptor antagonist. Br J Pharmacol 159:129–141

    CAS  PubMed  Article  Google Scholar 

  • Chan WR, Magnus KE, Watson HA (1976) The structure of cannabitriol. Experientia 32:283–284

    CAS  PubMed  Article  Google Scholar 

  • Citti C, Linciano P, Forni F et al (2019a) Analysis of impurities of cannabidiol from hemp: isolation, characterization and synthesis of cannabidibutol, the novel cannabidiol butyl analog. J Pharm Biomed Anal 175:112752

    CAS  PubMed  Article  Google Scholar 

  • Citti C, Linciano P, Russo F et al (2019b) A novel phytocannabinoid isolated from Cannabis sativa L. with an in vivo cannabimimetic activity higher than Δ9-tetrahydrocannabinol: Δ9-tetrahydrocannabiphorol. Sci Rep 9:20335

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Claussen U, Von Spulak F, Korte F (1966) Chemical classification of plants. XXXI. Hashish. 10. Cannabichromene, a new hashish component. Tetrahedron 22:1477–1479

    CAS  Article  Google Scholar 

  • Claussen U, von Spulak F, Korte F (1968) Hashish. XIV. Information on the substance of hashish. Tetrahedron 24:1021–1023

    CAS  PubMed  Article  Google Scholar 

  • Conant GC, Wolfe KH (2008) Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet 9:938–950

    CAS  PubMed  Article  Google Scholar 

  • Crombie L, Ponsford R, Shani A et al (1968) Hashish components: photochemical production of cannabicyclol from cannabichromene. Tetrahedron Lett 9:5771

    Article  Google Scholar 

  • Custers JH, Harrison SJ, Sela-Buurlage MB et al (2004) Isolation and characterisation of a class of carbohydrate oxidases from higher plants, with a role in active defence. Plant J 39:147–160

    CAS  PubMed  Article  Google Scholar 

  • Daniel B, Pavkov-Keller T, Steiner B et al (2015) Oxidation of monolignols by members of the berberine bridge enzyme family suggests a role in plant cell wall metabolism. J Biol Chem 290:18770–18781

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Daniel B, Konrad B, Toplak M et al (2017) The family of berberine bridge enzyme-like enzymes: a treasure-trove of oxidative reactions. Arch Biochem Biophys 632:88–103

    CAS  PubMed  Article  Google Scholar 

  • de Meijer EP, Bagatta M, Carboni A et al (2003) The inheritance of chemical phenotype in Cannabis sativa L. Genetics 163:335–346

    PubMed  PubMed Central  Article  Google Scholar 

  • De Petrocellis L, Vellani V, Schiano-Moriello A et al (2008) Plant-derived cannabinoids modulate the activity of transient receptor potential channels of ankyrin type-1 and melastatin type-8. J Pharmacol Exp Ther 325:1007–1015

    PubMed  Article  CAS  Google Scholar 

  • De Petrocellis L, Ligresti A, Moriello AS et al (2011) Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br J Pharmacol 163:1479–1494

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Dittrich H, Kutchan TM (1991) Molecular cloning, expression, and induction of berberine bridge enzyme, an enzyme essential to the formation of benzophenanthridine alkaloids in the response of plants to pathogenic attack. Proc Natl Acad Sci USA 88:9969–9973

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Ebersbach P, Stehle F, Kayser O, Freier E (2018) Chemical fingerprinting of single glandular trichomes of Cannabis sativa by coherent anti-Stokes Raman scattering (CARS) microscopy. BMC Plant Biol 18:275

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Elphick MR (2012) The evolution and comparative neurobiology of endocannabinoid signalling. Phil Trans R Soc Lond B: Biol Sci 367:3201–3215

    CAS  Article  Google Scholar 

  • Elsaid S, Kloiber S, Le Foll B (2019) Effects of cannabidiol (CBD) in neuropsychiatric disorders: a review of pre-clinical and clinical findings. In: Rahman S (ed) Progress in molecular biology and translational science, vol 167. Academic Press, Cambridge, pp 25–75

    Google Scholar 

  • ElSohly MA, El-Feraly FS, Turner CE (1977) Isolation and characterization of (+) cannabitriol and (-)-10-ethoxy-9-hydroxy-Δ6a(10a)-tetrahydrocannabinol: two new cannabinoids from Cannabis sativa L. extract. Lloydia 40:275–280

    CAS  PubMed  Google Scholar 

  • Elsohly MA, Boeren EG, Turner CE (1978) (±)9,10-Dihydroxy-Δ6a(10a)-tetrahydrocanabinol and (±)8, 9-dihydroxy-Δ6a(10a)-tetrahydrocannabinol: two new cannabinoids from Cannabis sativa L. Experientia 34:1127–1128

    CAS  PubMed  Article  Google Scholar 

  • ElSohly HN, Boeren EG, Turner CE, ElSohly MA (1984) Constituents of cannabis sativa L. XXIIII: Cannabitetrol, a new polyhydroxylated cannabinoid. In: Agurell SWRE, Dewey WL (eds) The cannabinoids: chemical, pharmacologic, and therapeutic aspects. Academic Press Inc, Orlando, pp 89–96

    Chapter  Google Scholar 

  • ElSohly MA, Radwan MM, Gul W et al (2017) Phytochemistry of Cannabis sativa L. In: Kinghorn AD, Falk H, Gibbons S, Kobayashi J (eds) Phytocannabinoids: unraveling the complex chemistry and pharmacology of Cannabis sativa. Springer, Cambridge, pp 1–36

    Google Scholar 

  • Facchini PJ, Penzes C, Johnson AG, Bull D (1996) Molecular characterization of berberine bridge enzyme genes from opium poppy. Plant Physiol 112:1669–1677

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Fellermeier M, Zenk MH (1998) Prenylation of olivetolate by a hemp transferase yields cannabigerolic acid, the precursor of tetrahydrocannabinol. FEBS Lett 427:283–285

    CAS  PubMed  Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    PubMed  Article  Google Scholar 

  • Fischedick JT, Hazekamp A, Erkelens T et al (2010) Metabolic fingerprinting of Cannabis sativa L., cannabinoids and terpenoids for chemotaxonomic and drug standardization purposes. Phytochemistry 71:2058–2073

    CAS  PubMed  Article  Google Scholar 

  • Friedrich-Fiechtl J, Spiteller G (1975) Neue cannabinoide—1. Tetrahedron 31:479–487

    CAS  Article  Google Scholar 

  • Gagne SJ, Stout JM, Liu E et al (2012) Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides. Proc Natl Acad Sci USA 109:12811–12816

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Gao S, Wang B, Xie SX et al (2020) A high-quality reference genome of wild Cannabis sativa. Horticult Res 7:1–11

    Google Scholar 

  • Gaoni Y, Mechoulam R (1964) Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc 86:1646–1647

    CAS  Article  Google Scholar 

  • Gaoni Y, Mechoulam R (1966) Cannabichromene, a new active principle in hashish. Chem Commun (London) 1:20–21

    Article  Google Scholar 

  • Gaoni Y, Mechoulam R (1967) Recent advances in the chemistry of hashish. In: Ashurst PR, Bohlmann F, Farkas L et al (eds) Fortschritte der Chemie Organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products / Progrès dans la Chimie des Substances Organiques Naturelles. Springer, Vienna, pp 175–213

    Google Scholar 

  • Giacoppo S, Bramanti P, Mazzon E (2017) Sativex in the management of multiple sclerosis-related spasticity: an overview of the last decade of clinical evaluation. Mult Scler Relat Disord 17:22–31

    PubMed  Article  Google Scholar 

  • Go MK, Lim KJH, Yew WS (2020a) Cannabinoid biosynthesis using noncanonical cannabinoid synthases. bioRxiv:2020.2001.2029.926089

  • Grassa CJ, Weiblen GD, Wenger JP et al (2021) A new Cannabis genome assembly associates elevated cannabidiol (CBD) with hemp introgressed into marijuana. New Phytol 230:1665–1679

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Grote H, Spiteller G (1978a) Neue cannabinoide. II. J Chromatogr A 154:3–11

    Article  Google Scholar 

  • Grote H, Spiteller G (1978b) Neue cannabinoide—III: Die Struktur des Cannabicumaronons und analoger Verbindungen. Tetrahedron 34:3207–3213

    CAS  Article  Google Scholar 

  • Grunfeld Y, Edery H (1969) Psychopharmacological activity of the active constituents of hashish and some related cannabinoids. Psychopharmacol 14:200–210

    CAS  Article  Google Scholar 

  • Hanuš LO, Meyer SM, Muñoz E et al (2016a) Phytocannabinoids: a unified critical inventory. Nat Prod Rep 33:1357–1392

    PubMed  Article  Google Scholar 

  • Hanuš LO, Levy R, De La Vega D et al (2016b) The main cannabinoids content in hashish samples seized in Israel and Czech Republic. Isr J Plant Sci 63:182–190

    Article  Google Scholar 

  • Hartsel SC, Loh WHT, Robertson LW (1983) Biotransformation of Cannabidiol to Cannabielsoin by Suspension Cultures of Cannabis sativa and Saccharum officinarum. Planta Med 48:17–19

    CAS  PubMed  Article  Google Scholar 

  • Harvey DI (1976) Characterization of the butyl homologues of Δ1-tetrahydrocannabinol, cannabinol and cannabidiol in samples of cannabis by combined gas chromatography and mass spectrometry. J Pharm Pharmacol 28:280–285

    CAS  PubMed  Article  Google Scholar 

  • Harvey DJ (1985) Examination of a 140 year old ethanolic extract of cannabis: identification of new cannabitriol homologues and the ethyl homologue of cannabinol. In: Harvey DJ, Paton W, Hahas GG (ed) Marihuana '84 : proceedings of the Oxford Symposium on Cannabis : 9th International Congress of Pharmacology, 3rd Satellite Symposium on Cannabis. IRL Press, Oxford, UK, pp 23–30

  • Hively RL, Mosher WA, Hoffmann FW (1966) Isolation of trans-delta-tetrahydrocannabinol from marijuana. J Am Chem Soc 88:1832–1833

    CAS  PubMed  Article  Google Scholar 

  • Hurgobin B, Tamiru-Oli M, Welling MT et al (2021) Recent advances in Cannabis sativa genomics research. New Phytol 230:73–89

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Ibeas Bih C, Chen T, Nunn AVW et al (2015) Molecular targets of cannabidiol in neurological disorders. Neurother 12:699–730

    Article  CAS  Google Scholar 

  • Jacob A, Todd AR (1940) Cannabidiol and cannabol, constituents of Cannabis indica resin. Nature 145:350

    CAS  Article  Google Scholar 

  • Jikomes N, Zoorob M (2018) The cannabinoid content of legal cannabis in Washington State varies systematically across testing facilities and popular consumer products. Sci Rep 8:1–15

    CAS  Article  Google Scholar 

  • Jin D, Jin S, Yu Y et al (2017) Classification of Cannabis cultivars marketed in Canada for medical purposes by quantification of cannabinoids and terpenes using HPLC-DAD and GC-MS. J Anal Bioanal Tech 8:2

    Article  CAS  Google Scholar 

  • Kajikawa M, Shoji T, Kato A, Hashimoto T (2011) Vacuole-localized berberine bridge enzyme-like proteins are required for a late step of nicotine biosynthesis in tobacco. Plant Physiol 155:2010–2022

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kearsey LJ, Prandi N, Karuppiah V et al (2020) Structure of the Cannabis sativa olivetol-producing enzyme reveals cyclization plasticity in type III polyketide synthases. FEBS J 287:1511–1524

    CAS  PubMed  Article  Google Scholar 

  • Korte F, Sieper H (1964) Zur chemischen Klassifizierung von Pflanzen: XXIV. Untersuchung von Haschisch-Inhaltsstoffen durch Dünnschichtchromatographie. J Chromatogr A 13:90–98

    CAS  Article  Google Scholar 

  • Korte F, Hagg M, Claussen U (1965) Tetrahydrocannabinolcarboxylic acid, a component of hashish. Angew Chem 4:872–872

    CAS  Article  Google Scholar 

  • Kovalchuk I, Pellino M, Rigault P et al (2020) The genomics of Cannabis and its close relatives. Annu Rev Plant Biol 71:713–739

    CAS  PubMed  Article  Google Scholar 

  • Krejcí Z, Šantavý F (1975) Isolation of two new cannabinoid acids from Cannabis sativa L. of Czechoslovak origin. Acta Univ Olomuc, Fac Med 74:161–166

    Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kumar A, Premoli M, Aria F, Bonini SA, Maccarinelli G, Gianoncelli A, Memo M, Mastinu A (2019) Cannabimimetic plants: Are they new cannabinoidergic modulators? Planta 249:1681–1694

    CAS  PubMed  Article  Google Scholar 

  • Küppers F, Lousberg RC, Bercht C et al (1973) Cannabis—VIII: pyrolysis of Cannabidiol. Structure elucidation of the main pyrolytic product. Tetrahedron 29:2797–2802

    Article  Google Scholar 

  • Laprairie RB, Bagher AM, Kelly ME, Denovan-Wright EM (2015) Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br J Pharmacol 172:4790–4805

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Laverty KU, Stout JM, Sullivan MJ et al (2019) A physical and genetic map of Cannabis sativa identifies extensive rearrangements at the THC/CBD acid synthase loci. Genome Res 29:146–156

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Linciano P, Citti C, Russo F, Tolomeo F, Laganà A, Capriotti AL, Luongo L, Iannotta M, Belardo C, Maione S, Forni F (2020) Identification of a new cannabidiol n-hexyl homolog in a medicinal cannabis variety with an antinociceptive activity in mice: cannabidihexol. Sci Rep 10:1

    Article  CAS  Google Scholar 

  • Long T, Wagner M, Demske D et al (2017) Cannabis in Eurasia: origin of human use and Bronze Age trans-continental connections. Veg Hist Archeobiol 26:245–258

    Article  Google Scholar 

  • Lousberg RJJC, Bercht CAL, van Ooyen R, Spronck HJW (1977) Cannabinodiol: conclusive identification and synthesis of a new cannabinoid from Cannabis sativa. Phytochemistry 16:595–597

    CAS  Article  Google Scholar 

  • Luo X, Reiter MA, d’Espaux L et al (2019) Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature 567:123–126

    CAS  PubMed  Article  Google Scholar 

  • Mahadevan A, Siegel C, Martin BR et al (2000) Novel cannabinol probes for CB1 and CB2 cannabinoid receptors. J Med Chem 43:3778–3785

    CAS  PubMed  Article  Google Scholar 

  • Marcu J (2020) The legalization of cannabinoid products and standardizing cannabis-drug development in the United States: a brief report. Dial Clin Neurosci 22:289

    Article  Google Scholar 

  • Marinotti O, Sarill M (2020) Differentiating full-spectrum hemp extracts from CBD isolates: implications for policy, safety and science. J Diet Suppl 17:517–526

    CAS  PubMed  Article  Google Scholar 

  • Marks MD, Tian L, Wenger JP et al (2009) Identification of candidate genes affecting Delta9-tetrahydrocannabinol biosynthesis in Cannabis sativa. J Exp Bot 60:3715–3726

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Matsuda LA, Lolait SJ, Brownstein MJ et al (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564

    CAS  PubMed  Article  Google Scholar 

  • May MB, Glode AE (2016) Dronabinol for chemotherapy-induced nausea and vomiting unresponsive to antiemetics. Cancer Managem Res 8:49

    CAS  Google Scholar 

  • McPartland JM, Duncan M, Di Marzo V, Pertwee RG (2015) Are cannabidiol and Δ9-tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review. Brit J Pharmacol 172:737–753

    CAS  Article  Google Scholar 

  • Mechoulam R, Shvo Y (1963) Hashish—I: the structure of cannabidiol. Tetrahedron 19:2073–2078

    CAS  PubMed  Article  Google Scholar 

  • Mechoulam R, Gaoni Y (1965a) Hashish—IV: the isolation and structure of cannabinolic cannabidiolic and cannabigerolic acids. Tetrahedron 21:1223–1229

    CAS  PubMed  Article  Google Scholar 

  • Mechoulam R, Gaoni Y (1965b) A total synthesis of dl-Δ1-tetrahydrocannabinol, the active constituent of hashish. J Am Chem Chem Soc 87:3273–3275

    CAS  Article  Google Scholar 

  • Mechoulam R, Ben-Zvi Z, Yagnitinsky B, Shani A (1969) A new tetrahydrocannabinolic acid. Tetrahedron Lett 10:2339–2341

    Article  Google Scholar 

  • Mechoulam R, Shani A, Edery H, Grunfeld Y (1970) Chemical basis of hashish activity. Science 169:611–612

    CAS  PubMed  Article  Google Scholar 

  • Mechoulam R, Hanuš LO, Pertwee R, Howlett AC (2014) Early phytocannabinoid chemistry to endocannabinoids and beyond. Nat Rev Neurosci 15:757–764

    CAS  PubMed  Article  Google Scholar 

  • Merkus FWHM (1971) Cannabivarin and tetrahydrocannabivarin, two new constituents of hashish. Nature 232:579–580

    CAS  PubMed  Article  Google Scholar 

  • Morimoto S, Komatsu K, Taura F, Shoyama Y (1997) Enzymological evidence for cannabichromenic Acid Biosynthesis. J Nat Prod 60(8):854–857

    CAS  Article  Google Scholar 

  • Morimoto S, Komatsu K, Taura F, Shoyama Y (1998) Purification and characterization of cannabichromenic acid synthase from Cannabis sativa. Phytochemistry 49:1525–1529

    CAS  PubMed  Article  Google Scholar 

  • Morita M, Ando H (1984) Analysis of hashish oil by gas chromatography/mass spectrometry. Kagaku Keisatsu Kenkyusho Hokoku Hokagaku Hen 37:137–140

    CAS  Google Scholar 

  • Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65

    CAS  PubMed  Article  Google Scholar 

  • Nahar L, Onder A, Sarker SD (2019) A review on the recent advances in HPLC, UHPLC and UPLC analyses of naturally occurring cannabinoids (2010–2019). Phytochem Anal 31:413–457

    PubMed  Article  CAS  Google Scholar 

  • Nahar L, Guo M, Sarker SD (2020) Gas chromatographic analysis of naturally occurring cannabinoids: a review of literature published during the past decade. Phytochem Anal 31:135–146

    CAS  PubMed  Article  Google Scholar 

  • Nevalainen T, Irving AJ (2010) GPR55, a lysophosphatidylinositol receptor with cannabinoid sensitivity? Curr Top Med Chem 10:799–813

    CAS  PubMed  Article  Google Scholar 

  • Obata Y, Ishikawa Y (1966) Studies on the constituents of hemp plant (Cannabis sativa L.) Part III. Isolation of a Gibbs-positive compound from Japanese hemp. Agric Biol Chem 30:619–620

    CAS  Google Scholar 

  • Pagani A, Scala F, Chianese G et al (2011) Cannabioxepane, a novel tetracyclic cannabinoid from hemp, Cannabis sativa L. Tetrahedron 67:3369–3373

    CAS  Article  Google Scholar 

  • Page JE, Boubakir Z (2014) Aromatic prenyltransferase from Cannabis. U.S. Patent 8,884,100, issued November 11, 2014

  • Pertwee R (2008) The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9-tetrahydrocannabinol, cannabidiol and Δ9-tetrahydrocannabivarin. Brit J Pharmacol 153:199–215

    CAS  Article  Google Scholar 

  • Pertwee RG, Howlett A, Abood ME et al (2010) International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev 62:588–631

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Pollastro F, Taglialatela-Scafati O, Allarà M et al (2011) Bioactive prenylogous cannabinoid from fiber hemp (Cannabis sativa). J Nat Prod 74:2019–2022

    CAS  PubMed  Article  Google Scholar 

  • Qureshi MN, Kanwal F, Afridi M, Akram M (2012) Estimation of biologically active cannabinoids in Cannabis indica by gas chromatography-mass spectrometry (GC-MS). World Appl Sci J 19:918–923

    CAS  Google Scholar 

  • Radwan MM, Ross SA, Slade D et al (2008a) Isolation and characterization of new Cannabis constituents from a high potency variety. Planta Med 74:267–272

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Radwan MM, ElSohly MA, Slade D, Ahmed SA, Wilson L, El-Alfy AT, Khan IA, Ross SA (2008b) Non-cannabinoid constituents from a high potency Cannabis sativa variety. Phytochemistry 69:2627–2633

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Radwan MM, ElSohly MA, Slade D et al (2009) Biologically active cannabinoids from high-potency Cannabis sativa. J Nat Prod 72:906–911

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Radwan MM, ElSohly MA, El-Alfy AT et al (2015) Isolation and pharmacological evaluation of minor cannabinoids from high-potency Cannabis sativa. J Nat Prod 78:1271–1276

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Raharjo TJ, Chang W-T, Choi YH et al (2004) Olivetol as product of a polyketide synthase in Cannabis sativa L. Plant Sci 166:381–385

    CAS  Article  Google Scholar 

  • Richins RD, Rodriguez-Uribe L, Lowe K et al (2018) Accumulation of bioactive metabolites in cultivated medical Cannabis. PLoS ONE 13:e0201119

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Romero P, Peris A, Vergara K, Matus JT (2020) Comprehending and improving cannabis specialized metabolism in the systems biology era. Plant Sci 298:110571

    CAS  PubMed  Article  Google Scholar 

  • Rosenthaler S, Pöhn B, Kolmanz C et al (2014) Differences in receptor binding affinity of several phytocannabinoids do not explain their effects on neural cell cultures. Neurotox Teratol 46:49–56

    CAS  Article  Google Scholar 

  • Ross SA, ElSohly MA, Sultana GN, Mehmedic Z, Hossain CF, Chandra S (2005) Flavonoid glycosides and cannabinoids from the pollen of Cannabis sativa L. Phytochem Anal 16:45–48

    CAS  PubMed  Article  Google Scholar 

  • Shani A, Mechoulam R (1974) Cannabielsoic acids: isolation and synthesis by a novel oxidative cyclization. Tetrahedron 30:2437–2446

    CAS  Article  Google Scholar 

  • Shao Z, Yan W, Chapman K (2019) Structure of an allosteric modulator bound to the CB1 cannabinoid receptor. Nat Chem Biol 15:1199–1205

    CAS  PubMed  Article  Google Scholar 

  • Shoyama Y, Fujita T, Yamauchi T, Nishioka I (1968) Cannabichromenic acid, a genuine substance of cannabichromene. Chem Pharm Bull 16:1157

    CAS  Article  Google Scholar 

  • Shoyama Y, Yamauchi T, Nishioka I (1970) Cannabis. V. Cannabigerolic acid monomethyl ether and cannabinolic acid. Chem Pharm Bull 18(7):1327–1332

    CAS  Article  Google Scholar 

  • Shoyama Y, Yamauchi T, Nishioka I (1972a) Cannabis. VI. Cannabicyclolic acid. Chem Pharm Bull 20:1927–1930

    CAS  Article  Google Scholar 

  • Shoyama Y, Kuboe K, Nishioka I, Yamauchi T (1972b) Cannabidiol monomethyl ether. A new neutral cannabinoid. Chem Pharm Bull 20:2072–2072

    CAS  Article  Google Scholar 

  • Shoyama Y, Hirano H, Oda M et al (1975) Cannabichromevarin and cannabigerovarin, two new propyl homologues of cannabichromene and cannabigerol. Chem Pharm Bull 23:1894–1895

    CAS  Article  Google Scholar 

  • Shoyama Y, Hirano H, Makino H et al (1977) Cannabis. X. The isolation and structures of four new propyl cannabinoid acids, tetrahydrocannabivarinic acid, cannabidivarinic acid, cannabichromevarinic acid and cannabigerovarinic acid, from Thai Cannabis, “Meao variant.” Chem Pharm Bull 25:2306–2311

    CAS  Article  Google Scholar 

  • Shoyama Y, Morimoto S, Nishioka I (1981) Cannabis. XIV. Two new propyl cannabinoids, cannabicyclovarin and Delta7-cis-iso-tetrahydrocannabivarin, from Thai Cannabis. Chem Pharm Bull 29:3720–3723

    CAS  Article  Google Scholar 

  • Shoyama Y, Tamada T, Kurihara K et al (2012) Structure and function of ∆1-tetrahydrocannabinolic acid (THCA) synthase, the enzyme controlling the psychoactivity of Cannabis sativa. J Mol Biol 423:96–105

    CAS  PubMed  Article  Google Scholar 

  • Sirikantaramas S, Morimoto S, Shoyama Y et al (2004) The gene controlling marijuana psychoactivity molecular cloning and heterologous expression of Δ1-tetrahydrocannabinolic acid synthase from Cannabis sativa L. J Biol Chem 279:39767–39774

    CAS  PubMed  Article  Google Scholar 

  • Smith RM (1997) Identification of butyl cannabinoids in marijuana. J Forens Sci 42:610–618

    CAS  Google Scholar 

  • Smith RM, Kempfert KD (1977) Δ1-3,4-cis-tetrahydrocannabinol in Cannabis sativa. Phytochemistry 16:1088–1089

    CAS  Article  Google Scholar 

  • Stone NL, Murphy AJ, England TJ, O’Sullivan SE (2020) A systematic review of minor phytocannabinoids with promising neuroprotective potential. Brit J Pharmacol 177:4330–4352

    CAS  Google Scholar 

  • Stout JM, Boubakir Z, Ambrose SJ et al (2012) The hexanoyl-CoA precursor for cannabinoid biosynthesis is formed by an acyl-activating enzyme in Cannabis sativa trichomes. Plant J 71:353–365

    CAS  PubMed  Google Scholar 

  • Svíženská I, Dubový P, Šulcová A (2008) Cannabinoid receptors 1 and 2 (CB1 and CB2), their distribution, ligands and functional involvement in nervous system structures—a short review. Pharmacol Biochem 90:501–511

    Article  CAS  Google Scholar 

  • Taglialatela-Scafati O, Pagani A, Scala F et al (2010) Cannabimovone, a cannabinoid with a rearranged terpenoid skeleton from hemp. Eur J Org Chem 2010:2067–2072

    Article  CAS  Google Scholar 

  • Taura F, Morimoto S, Shoyama Y, Mechoulam R (1995a) First direct evidence for the mechanism of Delta1-tetrahydrocannabinolic acid biosynthesis. J Am Chem Soc 117:9766–9767

    CAS  Article  Google Scholar 

  • Taura F, Morimoto S, Shoyama Y (1995b) Cannabinerolic acid, a cannabinoid from Cannabis sativa. Phytochemistry 39:457–458

    CAS  Article  Google Scholar 

  • Taura F, Morimoto S, Shoyama Y (1996) Purification and characterization of cannabidiolic-acid synthase from Cannabis sativa L.: Biochemical analysis of a novel enzyme that catalyzes the oxidocyclization of cannabigerolic acid to cannabidiolic acid. J Biol Chem 271:17411–17416

    CAS  PubMed  Article  Google Scholar 

  • Taura F, Sirikantaramas S, Shoyama Y et al (2007) Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa. FEBS Lett 581:2929–2934

    CAS  PubMed  Article  Google Scholar 

  • Taura F, Tanaka S, Taguchi C et al (2009) Characterization of olivetol synthase, a polyketide synthase putatively involved in cannabinoid biosynthetic pathway. FEBS Lett 583:2061–2066

    CAS  PubMed  Article  Google Scholar 

  • Toplak M, Wiedemann G, Ulićević J et al (2018) The single berberine bridge enzyme homolog of Physcomitrella patens is a cellobiose oxidase. FEBS J 285:1923–1943

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Turner CE, Elsohly MA (1979) Constituents of cannabis sativa L. XVI. A possible decomposition pathway of Δ9-tetrahydrocannabinol to cannabinol. J Heterocyc Chem 16:1667–1668

    CAS  Article  Google Scholar 

  • Turner C, Mole M, Hanus L, ElSohly H (1981) Constituents of Cannabis sativa. XIX. Isolation and structure elucidation of cannabiglendol, a novel cannabinoid from an Indian variant. J Nat Prod 44:27–33

    CAS  Article  Google Scholar 

  • Udoh M, Santiago M, Devenish S et al (2019) Cannabichromene is a cannabinoid CB2 receptor agonist. Brit J Pharmacol 176:4537–4547

    CAS  Article  Google Scholar 

  • van Bakel H, Stout JM, Cote AG et al (2011) The draft genome and transcriptome of Cannabis sativa. Genome Biol 12:1–18

    Article  Google Scholar 

  • van Ginneken C, Vree T, Breimer D, Thijssen H, Van Rossum J (1973) Cannabinodiol, a new hashish consituent, identified by gaschromatography-mass spectrometry. In: Frigerio A (ed) Proceedings of the international symposium on gas chromatography mass spectrometry. Tamburini Editore, Isle of Elba, Italy, pp 109–129

  • van Velzen R, Schranz ME (2020) Origin and evolution of the cannabinoid oxidocyclase gene family. bioRxiv https://doi.org/10.1101/2020.1112.1118.423406

  • Vemuri VK, Makriyannis A (2015) Medicinal chemistry of cannabinoids. Clin Pharmacol Ther 97:553–558

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Vergara D, Huscher EL, Keepers KG et al (2019) Gene copy number is associated with phytochemistry in Cannabis sativa. AoB Plants 11:plz074

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Vollner L, Bieniek D, Korte F (1969) Hashish. XX. Cannabidivarin, a new hashish constituent. Tetrahedron Lett:145–147

  • von Spulak F, Claussen U, Fehlhaber HW, Korte F (1968) Haschisch—XIX: Cannabidiolcarbonsäure-tetrahydrocannabitriol-ester, ein neuer Haschisch-Inhaltsstoff. Tetrahedron 24:5379–5383

    Article  Google Scholar 

  • Vree TB, Breimer DD, van Ginneken CA, van Rossum JM (1972a) Identification in hashish of tetrahydrocannabinol, cannabidiol and cannabinol analogues with a methyl side-chain. J Pharm Pharmacol 24:7–12

    CAS  PubMed  Article  Google Scholar 

  • Vree TB, Breimer DD, Van Ginneken CAM, Van Rossum JM (1972b) Gas chromatography of cannabis constituents and their synthetic derivatives. J Chromatogr A 74:209–224

    CAS  Article  Google Scholar 

  • Wang YH, Avula B, ElSohly MA et al (2018) Quantitative determination of Δ9-THC, CBG, CBD, their acid precursors and five other neutral cannabinoids by UHPLC-UV-MS. Planta Med 84:260–266

    CAS  PubMed  Article  Google Scholar 

  • Weiblen GD, Wenger JP, Craft KJ et al (2015) Gene duplication and divergence affecting drug content in Cannabis sativa. New Phytol 208:1241–1250

    CAS  PubMed  Article  Google Scholar 

  • Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699

    CAS  PubMed  Article  Google Scholar 

  • Wood TB, Spivey WN, Easterfield TH (1899) Cannabinol. Part i J Chem Soc Trans 75:20–36

    CAS  Article  Google Scholar 

  • Yamamoto I, Gohda H, Narimatsu S, Yoshimura H (1988) Identification of cannabielsoin, a new metabolite of cannabidiol formed by guinea-pig hepatic microsomal enzymes, and its pharmacological activity in mice. J Pharmacobio Dyn 11:833–838

    CAS  PubMed  Article  Google Scholar 

  • Yamamoto I, Gohda H, Narimatsu S et al (1991) Cannabielsoin as a new metabolite of cannabidiol in mammals. Pharmacol Biochem 40:541–546

    CAS  Article  Google Scholar 

  • Yamauchi T, Shoyama Y, Aramaki H et al (1967) Tetrahydrocannabinolic acid, a genuine substance of tetrahydrocannabinol. Chem Pharm Bull 15:1075–1076

    CAS  Article  Google Scholar 

  • Yang X, Matsui T, Kodama T et al (2016) Structural basis for olivetolic acid formation by a polyketide cyclase from Cannabis sativa. FEBS J 283:1088–1106

    CAS  PubMed  Article  Google Scholar 

  • Zager JJ, Lange I, Srividya N et al (2019) Gene networks underlying cannabinoid and terpenoid accumulation in Cannabis. Plant Physiol 180:1877–1897

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Zirpel B, Kayser O, Stehle F (2018) Elucidation of structure-function relationship of THCA and CBDA synthase from Cannabis sativa L. J Biotechnol 284:17–26

    CAS  PubMed  Article  Google Scholar 

  • Zulfiqar F, Ross SA, Slade D et al (2012) Cannabisol, a novel Δ9-THC dimer possessing a unique methylene bridge, isolated from Cannabis sativa. Tetrahedron Lett 53:3560–3562

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

Work on the evaluation of plant chemical diversity in the Lange laboratory is supported in part by the USDA National Institute of Food and Agriculture, Hatch project 1015621.

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lange, B.M., Zager, J.J. Comprehensive inventory of cannabinoids in Cannabis sativa L.: Can we connect genotype and chemotype?. Phytochem Rev 21, 1273–1313 (2022). https://doi.org/10.1007/s11101-021-09780-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-021-09780-2

Keywords

  • Cannabinoid
  • Cannabis
  • Chemical diversity
  • Biosynthesis