Skip to main content

Dysphania ambrosioides essential oils: from pharmacological agents to uses in modern crop protection—a review

Abstract

The damage to crops and food commodities by pests and diseases remains a major public health concern. Globally, investigations were carried out to develop harmless natural products from essential oils (EOs) and advances were made to meet users’ acceptance as an alternative to chemical fungicides and insecticides. Recently, many EOs have shown potential results against a wide range of plant pathogens and insect pests, and are thus, attractive substitutes to synthetic chemicals. Remarkably, EOs based commercial pesticides remain lesser in number and this opens several prospects for their claim for use in present agriculture. The present paper provides a summary of the current status and prospects in evaluating the efficiency of the use of EO of Dysphania ambrosioides (L.) Mosyakin & Clemants syn. Chenopodium ambrosioides L. (Mexican tea) belonging to the family Amaranthaceae, in crop protection strategies against plant pathogens and insect pests, considering the opportunities and problems linked with the prospects of sustainable environment-friendly agriculture in the future. In addition, the chemical composition of D. ambrosioides EO from different geographical regions along with the pharmacological application, probable modes of action, and indication for or against the use of this EO as an alternative to chemicals, in several applications have been discussed. The EO of D. ambrosioides possessed potential pharmacological activities, such as antitumor, antiprotozoal, allelopathic, antiviral, immunoregulatory, anti-inflammatory, and antioxidant activities. Most of the chemically characterized EO of D. ambrosioides contained ascaridole, α-terpinene, p-cymene, and caryophyllene oxide as major components, and have shown efficient antibacterial, antifungal, and insecticidal activities against pests and pathogens of economically important crops. Thus, the EO of D. ambrosioides and its major constituents can be utilized as potential botanical pesticides for crop protection after large-scale evaluation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

(Adopted from Li et al. 2014)

Fig. 4

(Adopted from Liao et al. 2016)

References

  • Alain AG, Philippe S, Fidèle TP, Jean-Pierre N, Félicien A et al (2012) Chemical composition and biological activities of essential oils of Chenopodium ambrosioides L. collected in two areas of Benin. Int J Biosciences 2:58–66

    Google Scholar 

  • Al-kaf AG, Crouch RA, Denkert A, Porzel A, Al-Hawshabi OSS, Ali NAAA (2016) Chemical composition and biological activity of essential oil of Chenopodium ambrosioides from Yemen. Am J Essent Oils Nat Prod 4:20–22

    Google Scholar 

  • Almadiy AA (2020) Chemical profile, mosquitocidal, and biochemical effects of essential oil and major components of Dysphania ambrosioides against Culex quinquefasciatus Say. Environ Sci Poll Res 27:41568–41576

    CAS  Google Scholar 

  • Almeida F, Rodrigues ML, Coelho C (2019) The still underestimated problem of fungal diseases worldwide. Front Plant Sci 10:214

    Google Scholar 

  • Ávila-Blanco ME, Rodríguez MG, Duque JLM, Muñoz-Ortega M, Ventura-Juárez J (2014) Amoebicidal activity of essential oil of Dysphania ambrosioides (L) Mosyakin & Clemants in an amoebic liver abscess hamster model. Evid Based Complem Alternat Med 930208:7

    Google Scholar 

  • Azevedo MM, Faria-Ramos I, Cruz LC, Pina-Vaz C, Rodrigues AG (2015) Genesis of azole antifungal resistance from agriculture to clinical settings. J Agric Food Chem 63:7463–7468

    CAS  PubMed  Google Scholar 

  • Bai CQ, Liu ZL, Liu QZ (2011) Nematicidal constituents from the essential oil of Chenopodium ambrosioides aerial parts. J Chem 8:470862

    Google Scholar 

  • Bazaid SA, ElMougy N (2010) Assessment of the bioregulatory activity of the leaf juices of higher plants in Al-Taif Saudi Arabia against Fusarium solani, Phytophthora spp. and Rhizoctonia solani. Arch Phytopath Plant Prot 43:1064–1071

    Google Scholar 

  • Bernardes WA, Silva EO, Crotti AEM, Baldin LL (2018) Bioactivity of selected plant-derived essential oils against Zabrotes subfasciatus (Coleoptera: Bruchidae). J Stored Prod Res 77:16–19

    Google Scholar 

  • Bezerra AJW, Rodrigues Costa A, de Freitas MA, Rodrigues FC, de Souza MA, da Silva ARP, Dos Santos ATL, Vieiralves Linhares K, Melo Coutinho HD, de Lima Silva JR, Bezerra Morais-Braga MF (2019) Chemical composition, antimicrobial, modulator and antioxidant activity of essential oil of Dysphania ambrosioides (L.) Mosyakin & Clemants. Comput Immunol Microbiol Infect Dis 65:58–64

    Google Scholar 

  • Bigoga JD, Saahkem PA, Ndindeng SA, Ngondi JL, Nyegue M, Oben JE, Leke RGF (2013) Larvicidal and repellent potential of Chenopodium ambrosioides Linn essential oil against Anopheles gambiae Giles (Diptera: Culicidae). The Open Entomol J 7:16–22

    Google Scholar 

  • Bisht BS, Kumar A (2019) Terpenoid composition of Chenopodium ambrosioides L. and its antimicrobial activity from Uttarakhand Himalaya of India. J Drug Del Ther 9:612–617

    CAS  Google Scholar 

  • Borges AR, Aires JR, Higino TM, Medeiros MD, Citó AM, Lopes JA, Figueiredo RC (2012) Trypanocidal and cytotoxic activities of essential oils from medicinal plants of northeast of Brazil. Exp Parasitol 132:123–128

    CAS  PubMed  Google Scholar 

  • Bossou AD, Mangelinckx S, Yedomonhan H, Boko PM, De Kimpe AMC, N, Avlessi F, Sohounhloue DCK (2013) Chemical composition and insecticidal activity of plant essential oils from Benin against Anopheles gambiae (Giles). Parasit Vectors 6:337

  • Boutkhil S, Idrissi ME, Amechrouq A, Chbicheb A, Chakir S, Badaoui KE (2009) Chemical composition and antimicrobial activity of crude aqueous ethanol extracts and essential oils of Dysphania ambrosioides (L) Mosyakin & Clemants. Acta Botanica Gallica 156:2

    Google Scholar 

  • Brahim MAS, Fadli M, Hassani L, Boulay B, Markouk M, Bekkouche K et al (2015) Chenopodium ambrosioides var. ambrosioides used in Moroccan traditional medicine can enhance the antimicrobial activity of conventional antibiotics. Ind Crops Prod 71:37–43

    Google Scholar 

  • Calado GP, Lopes AJ, Costa Junior LM, Lima F, Silva LA, Pereira WS et al (2015) Chenopodium ambrosioides L. reduces synovial inflammation and pain in experimental Osteoarthritis. PLoS ONE 10(11):e0141886

    PubMed  PubMed Central  Google Scholar 

  • Calzada F, Arista R, Perez H (2010) Effect of plants used in Mexico to treat gastrointestinal disorders on charcoal–gum acacia-induced hyperperistalsis in rats. J Ethnopharmacol 128:49–51

    PubMed  Google Scholar 

  • Cantoria M (1976) Aromatic and medicinal herbs of the Philippines. Q J Crude Drug Res 14:97–128

    CAS  Google Scholar 

  • Caridha D, Vesely B, van Bocxlaer K, Arana B, Mowbray CE, Rafati S, Uliana S, Reguera R, Kreishman-Deitrick M, Sciotti R, Buffet P, Croft SL (2019) Route map for the discovery and pre-clinical development of new drugs and treatments for cutaneous leishmaniasis. Int J Parasitol Drugs Drug Resist 11:1–12

    Google Scholar 

  • Cavalli J, Tomi F, Bernardini A, Casanova J (2004) Combined analysis of the essential oil of Chenopodium ambrosioides by GC GC-MS and 13C-NMR spectroscopy: quantitative determination of ascaridole a heat-sensitive compound. Phytoch Anal 15:275–279

    CAS  Google Scholar 

  • Chekem MSG, Lunga PK, Tamokou JDD, Kuiate JR, Tane P, Vilarem G, Cerny M (2010) Antifungal properties of Chenopodium ambrosioides essential oil against Candida species. Pharmaceuticals 3:2900–2909

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Zhao L, Zhang C, Lan Z (2013) Protective effect of p-cymene onlipopolysaccharide-induced acute lung injury in mice. Inflammation 2:358–364

    Google Scholar 

  • Chiasson H, Bostanian NJ, Vincent C (2004a) Acaricidal properties of a Chenopodium-based botanical. J Econ Entomol 97:1373–1377

    CAS  PubMed  Google Scholar 

  • Chiasson H, Vincent C, Bostanian NJ (2004b) Insecticidal properties of a Chenopodium-based botanical. J Econ Entomol 97:1378–1383

    CAS  PubMed  Google Scholar 

  • Chu SS, Hu JF, Liu ZL (2011) Composition of essential oil of Chinese Chenopodium ambrosioides and insecticidal activity against maize weevil Sitophilus zeamais. Pest Manag Sci 67:714–718

    CAS  PubMed  Google Scholar 

  • Claude S, Christopher S, Alain Vianey MB, Brica Gatien NN, Jacob LD, Francois DP, Desire TV (2019) Essential oils as control agents against Fusarium oxysporum f. sp. lycopersici in Lycopersicon esculentum used under in vitro and in vivo conditions. IJAMBR 7:55–69

    Google Scholar 

  • Cloyed RA, Chiasson H (2007) Activity of an essential oil derived from Chenopodium ambrosioides on greenhouse insect pests. J Econ Entomol 100:459–466

    Google Scholar 

  • Cooksey DA (1990) Genetics of bactericide resistance in plant pathogenic bacteria. Ann Rev Phytopathol 28:201–219

    CAS  Google Scholar 

  • Correa-Royero J, Tangarife V, Durán C, Stashenko E, Mesa-Arango A (2010) In vitro antifungal activity and citotoxic effect of essential oils and extracts of medicinal and aromatic plants against Candida krusei and Aspergillus fumigatus. Rev Bras 20:734–741

    CAS  Google Scholar 

  • Cox SD, Mann CMI, Markham JL, Bell HC, Gustafson JE, Warmington JR et al (2000) The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J Appl Microbiol 88:170–175

    CAS  PubMed  Google Scholar 

  • Cruz GVB, Pereira PVS, Patrício FJ, Costa GC, Sousa SM, Frazao JB, Aragão-Filho WC, Maciel MCG, Silva LA, Amaral FMM, Barroqueiro ESB, Guerra RNM, Nascimento FRF (2007) Increase of cellular recruitment, phagocyto-sis ability and nitric oxide production induced by hydroalcoholic extract from Chenopodium ambrosioides leaves. J Ethnopharmacol 111:148–154

    PubMed  Google Scholar 

  • Cysne DN, Fortes TS, Reis AS, de Paulo RB, Dos Santos FA, do Amaral FM, et al (2016) Antimalarial potential of leaves of Chenopodium ambrosioides L. Parasitol Res 115:4327–4334

  • Da Silva RS, De Oliveira MMG, Silva KP, Rodrigues ISV, Pinto VDS, Blank AF, Fernandes RPM (2020) Synergistic effect of Cordia curassavica Jacq essential oils association against the phytopathogen Xanthomonas campestris pv campestris. Environ Sci Poll Res 27:4376–4389

    Google Scholar 

  • Dalcin MS, Café-Filho AC, Sarmento RA, Nascimento IR, Ferreira TP, Aguiar RWS, Santos GR (2017) Evaluation of essential oils for preventive or curative management of melon gummy stem blight and plant toxicity Mateus Sunti. J Med Plants Res 11:426–432

    CAS  Google Scholar 

  • de Morais Oliveira-Tintino CD, Tintino SR, Limaverde PW, Figueredo FG, Campina FF, da Cunha FAB, da Costa RHS, Pereira PS, Lima LF, de Matos YMLS, Coutinho HDM, Siqueira-Júnior JP, Balbino VQ, da Silva TG (2018) Inhibition of the essential oil from Chenopodium ambrosioides L. and α-terpinene on the NorA efflux-pump of Staphylococcus aureus. Food Chem 262:72–77

    PubMed  Google Scholar 

  • Degenhardt RT, Farias IV, Grassi LT, Franchi GC Jr, Nowill AE, Bittencourt CMS et al (2016) Characterization and evaluation of the cytotoxic potential of the essential oil of Chenopodium ambrosioides. Rev Bras 26:56–61

    CAS  Google Scholar 

  • Dembitsky V, Shkrob I, Hanus LO (2008) Ascaridole and related peroxides from the genus Chenopodium. Biomed. Pap. Med Fac Univ Palacky Olomouc Czech Repub 2:209–215

    Google Scholar 

  • Dembitsky VM (2008) Bioactive peroxides as potential therapeutic agents. Eur J Med Chem 43:223–251

    CAS  PubMed  Google Scholar 

  • Denloye AA, Makanjuola WA, Teslim OK, Alafia OA, Kasali AA, Eshilokun AO (2010) Toxicity of Chenopodium ambrosioides L. (Chenopodiaceae) products from Nigeria against three storage insects. J Plant Prot Res 50:379–384

    Google Scholar 

  • Dorman HJD, Deans SG (2000) Antibacterial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316

    CAS  PubMed  Google Scholar 

  • Dubey NK, Kishore N, Srivastava OP, Dikshit A, Singh SK (1983) Fungitoxicity of some higher plants against Rhizoctonia solani. Plant Soil 72:91–94

    Google Scholar 

  • Dufera LT, Tadesse AY, Gobena WS, Kuyu CG (2019) On farm evaluation of Eucalyptus globulus Labill leaf and Chenopodium ambrosioides L. whole plant powder against storage insect pests in stored maize at Sokoru district in Jimma zone of Oromia regional state. Ethiopia. Psyche: J Entomol 2306742:7

    Google Scholar 

  • Efferth T, Olbrich A, Sauerbrey A, Ross DD, Gebhart E, Neugebauer M (2002) Activity of ascaridol from the anthelmintic herb Chenopodium anthelminticum L. against sensitive and multidrug-resistant tumor cells. Anticancer Res 22:4221–4224

    CAS  PubMed  Google Scholar 

  • El Mokni R, Youssef FS, Jmii H, Khmiri A, Bouazzi S, Jlassi I (2019) The essential oil of Tunisian Dysphania ambrosioides and its antimicrobial and antiviral properties. Jeobp 22:282–294

    CAS  Google Scholar 

  • Fatokun OT, Diyaolu AH, Esievo KB, Adamu A, Aboh MO, Okhale SE (2019) Chemical composition and antibacterial activity of the essential oil of Dysphania ambrosioides (L.) Mosyakin & Clemants from North Central Nigeria. JOPAT 18:304–313

    Google Scholar 

  • Fekadu M, Mekuria T, Tesfaye B, Meshesha B, Gebre-Michael T (2009) Evaluation on larvicidal effects of essential oils of some local plants against Anopheles arabiensis Patton and Aedes aegypti Linnaeus (Diptera: Culicidae) in Ethiopia. Afr J Biotechnol 8:4183–4188

    Google Scholar 

  • Figueiredo AC, Barroso JG, Pedro LG, Scheffer JC (2008) Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flav Fragr J 23:213–226

    CAS  Google Scholar 

  • Franca F, Marsden LEL, PD, (1996) Plants used in the treatment of leishmanial ulcers due to Leishmania (Viannia) braziliensis in an endemic area of Bahia, Brazil. Rev Soc Bras Med Trop 29:229–232

    CAS  PubMed  Google Scholar 

  • Grassi LT (2011) Chenopodium ambrosioides L. – Erva de Santa Maria (Amaranthaceae): estudo do potencial anti-inflamatório, antinoci-ceptivo e cicatrizante. 2011. Itajaí, 147f. Programa de Pós-graduac¸ ão em CiênciasFarmacêuticas – Universidade do Vale do Itajaí.

  • Guerra M, Torres D, Martínez L (2001) Validación del uso tradicional de plantas medicinales cultivadas en Cuba. Rev Cubana Med Trop 2:48–51

    Google Scholar 

  • Gupta D, Charles R, Mehta VK, Garg SN, Sushil K (2002) Chemical examination of the essential oil of Chenopodium ambrosioides L from the southern hills of India. J Essent Oil Res 14:93–94

    CAS  Google Scholar 

  • Harraz V, Hammoda HM, Ghazouly MGE, Farag MA, Aswad AFE, Bassam SM (2015) Chemical composition antimicrobial and insecticidal activities of the essential oils of Conyza linifolia and Chenopodium ambrosioides. Nat Prod Res 29:879–882

    CAS  PubMed  Google Scholar 

  • Hewis LG, Daeli GBC, Tanoto KC, Sahamastuti AT (2020) A review of botany, phytochemical, and pharmacological effects of Dysphania ambrosioides. Indonesian J Life Sci 2:70–82

    Google Scholar 

  • Hui W, Bing L, Jun TH, Xin CY, Qing HY, Xiong ZZ (2010) Comparison of chemical constituents of essential oil from Chenopodium ambrosioides in different locations of Fujian Province or at different growth stages. J Plant Res Environ 19:62–67

    Google Scholar 

  • Hurrel JL (2018) Dysphania ambrosioides (L) Mosyakin & Clemants. In: Budapest AM (ed) Medicinal and aromatic plant of South Asia, pp 197–209

  • Ibironke GF, Ajiboye KI (2007) Studies on the anti-inflammatory and analgesic properties of Chenopodium ambrosioides leaf extract in rats. Int J Pharmacol 3:111–115

  • INCA (2011). Estimativa 2012: Incidência de Câncer no Brasil. Instituto Nacional doCâncer http://www.inca.gov.br/estimativa. Accessed April 2020

  • Jara-Bermeo A, Peñailillo P, San-Martín A, Malagon O, Gilardoni G, Gutiérrez M (2016) Chemical composition and antibacterial activity of essential oils from Azorella spinosa (apiaceae) against wild phytopathogenic bacteria. J Chilean Chem Soc 61:3246–3249

    CAS  Google Scholar 

  • Jaramillo CBE, Duarte RE, Delgado W (2012) Bioactivity of essential oil from Colombian Chenopodium ambrosioides. Planta Med 17:54–64

    Google Scholar 

  • Jardim CM, Jham GN, Dhingra OD, Freire MM (2008) Composition and antifungal activity of the essential oil of the Brazilian Chenopodium ambrosioides L. J Chem Ecol 34:1213–1218

    CAS  PubMed  Google Scholar 

  • Javaid A, Amin M (2009) Antifungal activity of methanol and n-hexane extracts of three Chenopodium species against Macrophomina phaseolina. Nat Prod Res 23:1120–1127

    CAS  PubMed  Google Scholar 

  • Jia-liang W, Dan-wei M, Ya-nan W, Hong Z, Bing H, Qun L, Zhi-yan Z, Jing F (2013) Cytotoxicity of essential oil of Chenopodium ambrosioides L against human breast cancer MCF-7 Cells. Trop J Pharma Res 12:929–933

    Google Scholar 

  • Jimenez-Osornio FMVZJ, Kumamoto J, Wasser C (1996) Allelopathic activity of Chenopodium ambrosioides L. Biochem Sys Ecol 24:195–205

    CAS  Google Scholar 

  • Jyotshna Srivastava N, Singh B, Chanda D, Shanker K (2015) Chemical composition and acetylcholinesterase inhibitory activity of Artemisia maderaspatana essential oil. Pharma Biol 53:1677–1683

    Google Scholar 

  • Kandpal V, Joshi PK, Joshi N (2016) GC-MS analysis of seed essential oil of Chenopodium ambrosioides L. collected from Himalayan region. Jeobp 19:258–261

    CAS  Google Scholar 

  • Kasali AA, Ekundayo O, Paul C, Konig WA, Eshilokun KAO, Ige B (2006) 12:34-Diepoxy-p-menthane and 14-Epoxy-p-menth- 2-ene: Rare Monoterpenoids from the essential oil of Chenopodium ambrosioides L var ambrosioides leaves. J Essent Oil Res 18:13–15

    CAS  Google Scholar 

  • Katsuno K, Burrows JN, Duncan K, van Huijsduijnen RH, Kaneko T, Kita K, Mowbray CE, Schmatz D, Warner P, Slingsby BT (2015) Hit and lead criteria in drug discovery for infectious diseases of the developing world. Nat Rev Drug Discov 14:751–758

    CAS  PubMed  Google Scholar 

  • Kaul VK (2000) Analysis of the essential oil of the leaves of the medicinal plant Chenopodium ambrosioides var anthelminticum (L.) A Gray from India. Sci Pharma 68:123–128

    Google Scholar 

  • Khomarlou N, Aberoomand-Azar P, Lashgari AP et al (2018) Essential oil composition and in vitro antibacterial activity of Chenopodium album subsp. striatum. Acta Biologia Hungarica 69:144–155

    CAS  Google Scholar 

  • Kinupp VF (2007) Plantas alimentícias não-convencionais daregião metropolitana de Porto Alegre, RS, 2007, Porto Alegre, 562 f. Universidade Federal do Rio Grande do Sul, Faculdadede Agronomia

    Google Scholar 

  • Kiuchi F, Itano Y, Uchiyama N, Honda G, Tsubouchi A, Nakajima-Shimada J et al (2002) Monoterpene hydroperoxides with trypanocidal activity from Chenopodium ambrosioides. J Nat Prod 65:509–512

  • Kliks MM (1985) Studies on the traditional herbal anthelmintic Chenopodium ambrosioides L.: Ethnopharmacological evaluation and clinical field trials. Soc Sci Med 21:879–886

    CAS  PubMed  Google Scholar 

  • Knauth P, Acevedo-Hernández GJ, Cano ME, Gutiérrez-Lomelí M, López Z (2018) In vitro bioactivity of methanolic extracts from Amphipterygium adstringens (Schltdl.) Schiede ex Standl., Chenopodium ambrosioides L., Cirsium mexicanum DC., Eryngium carlinae F. Delaroche, and Pithecellobium dulce (Roxb.) Benth. used in traditional medicine in Mexico. Evid Based Complement Alternat Med 3610364:28.

  • Koba K, Catherine G, Raynaud C, Chaumont JP, Sanda K, Laurence N (2009) Chemical composition and cytotoxic activity of Chenopodium ambrosioides L. essential oil from Togo. Bangladesh J Sci Ind Res 44:435–440

    CAS  Google Scholar 

  • Kouam MK, Payne VK, Miégoué E, Tendonkeng F, Lemoufouet J, Kana JR, Boukila B, Pamo ET, Bertine MNM (2015) Evaluation of in vivo acaricidal effect of soap containing essential oil of Chenopodium ambrosioides leaves on Rhipicephalus lunulatus in the Western Highland of Cameroon. J Pathogens 516869:5

    Google Scholar 

  • Kuete V (2014) Physical hematological and histopathological signs of toxicity induced by African medicinal plants in toxicological survey of African medicinal plants. In: Kuete V (ed) pp 635–657

  • Kumar R, Mishra AJ, Dubey NK, Tripathi YB (2007) Evaluation of Chenopodium ambrosioides oil as a potential source of antifungal antiaflatoxigenic and antioxidant activity. Int J Food Microbiol 115:159–164

    CAS  PubMed  Google Scholar 

  • Lal N, Meyer JJM (1999) In vitro inhibition of drug-resistant and drug-sensitive strains of Mycobacterium tuberculosis by ethnobotanically selected South African plants. J Ethnopharmacol 66:347–354

    Google Scholar 

  • Langsi DJ, Nukenine EN, Fokunang CN, Suh C, Goudoungou WJ (2017) Potentials of essential oils of Chenopodium ambrosioides L and Cupressus sempervirens L. against stored maize pest Sitophilus zeamais Motschulsky. J Entomol Zool Stud 5:309–313

    Google Scholar 

  • Langsi DJ, Tofel HK, Fokunang CN, Suh C, Eloh K, Caboni P, Nukenine EN (2018) Insecticidal activity of essential oils of Chenopodium ambrosioides and Cupressus sempervirens and their binary combinations on Sitophilus zeamais. GSC Biol Pharma Sci 3:24–34

    CAS  Google Scholar 

  • Li J, Yang X, Yu J, Li Z, Deng Q, Cao Y, Chen X, Zhang H, Wang Y (2020) Chemical composition of the volatile oil of Chenopodium ambrosioides L. from Mianyang in Sichuan Province of China and its sub-chronic toxicity in mice. Trop J Pharma Res 19:1985–1991

    CAS  Google Scholar 

  • Li Y, Fabiano-Tixier AS, Chemat F (2014) Essential oils as antimicrobials. In: Sharma SK (ed) Essential oils as reagents in green chemistry. Springer international publishing, Cham, pp 29–40

    Google Scholar 

  • Liao M, Xiao JJ, Zhou LJ, Liu Y, Wu XW, Hua RM et al (2016) Insecticidal activity of Melaleuca alternifolia essential oil and RNA-Seq analysis of Sitophilus zeamais transcriptome in response to oil fumigation. PLoS ONE 11(12):e0167748

    PubMed  PubMed Central  Google Scholar 

  • Limaverde PW, Campina FF, Cunha FAB, Crispim FD, Figueredo FG, Lima LF et al (2017) Inhibition of the TetK efflux-pump by the essential oil of Chenopodium ambrosioides L. and α-terpinene against Staphylococcus aureus IS-58. Food Chem Toxicol 17:1–18

    Google Scholar 

  • Lohani H, Chauhan NK, Kumar K, Haider SZ, Andola H (2012) Comparative aroma profile of wild and cultivated Chenopodium ambrosioides L from Uttarakhand. J Essent Oil Res 15:657–661

    Google Scholar 

  • Lombardo P, Guimaraens A, Franco J, Dellacassa E, Faggiani EP (2016) Effectiveness of essential oils for postharvest control of Phyllosticta citricarpa (citrus black spot) on citrus fruit. Postharvest Biol Technol 121:1–8

    CAS  Google Scholar 

  • Machín L, Tamargo B, Piñón A, Atíes RC, Scull R, Setzer WN, Monzote L (2019) Bixa orellana L. (Bixaceae) and Dysphania ambrosioides (L.) Mosyakin & Clemants (Amaranthaceae) essential oils formulated in nanocochleates against Leishmania amazonensis. Molecules 24:4222

    PubMed Central  Google Scholar 

  • Matos JAL (2011) Potencial Biológico de Chenopodium ambrosioides L. (Erva-de-Santa-Maria). Porto, 51 f. Programa de Pós-graduac¸ ãoem Ciências Farmacêuticas, Universidade Fernando Pessoa.

  • Medina-Pérez G, Fernández-Luqueño F, Campos-Montiel RG, Sánchez-López KB, Afanador-Barajas LN, Prince L (2019) Nanotechnology in crop protection: Status and future trends. Nano-Biopesticides today and future perspectives. Academic Press, Cambridge, MA

    Google Scholar 

  • Mendesil E, Tadesse M, Negash M (2012) Efficacy of plant essential oils against two major insect pests of coffee (Coffee berry borer, Hypothenemus hampei and antestia bug, Antestiopsis intricata) and maize weevil Sitophilus zeamais. Arch Phytopath Plant Prot 45:366–372

    CAS  Google Scholar 

  • Monzote L (2007) Essential oil from Chenopodium ambrosioides: a return to traditional medicine? Int J Essent Oil Ther 1:179–183

    CAS  Google Scholar 

  • Monzote L, García M, Montalvo AM, Linares R, Scull R (2009) Effect of oral treatment with the essential oil from Chenopodium ambrosioides against cutaneous leishmaniasis in BALB/c mice, caused by Leishmania amazonensis. Complem Med Res 16:334–338

    Google Scholar 

  • Monzote L, García M, Pastor J, Gil L, Scull R, Maes L, Cos P, Gille L (2014a) Essential oil from Chenopodium ambrosioides and main components: activity against Leishmania their mitochondria and other microorganisms. Exp Parasitol 136:20–26

    CAS  PubMed  Google Scholar 

  • Monzote L, Geroldinger G, Tonner M, Scull R, De Sarkar S, Bergmann S, Bacher M, Staniek K, Chatterjee M, Rosenau T, Gille L (2018) Interaction of ascaridole, carvacrol, and caryophyllene oxide from essential oil of Chenopodium ambrosioides L. with mitochondria in Leishmania and other eukaryotes. Phytother Res 32:1729–1740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monzote L, Montalvo AM, Almanonni S, Scull R, Miranda M, Abreu J (2006) Activity of the essential oil from Chenopodium ambrosioides grown in Cuba against Leishmania amazonensis. Chemotherapy 52:130–136

    CAS  PubMed  Google Scholar 

  • Monzote L, Paster L, Scull R, Gille L (2014b) Antileishmanial activity of essential oil from Chenopodium ambrosioides and its main components against experimental cutaneous leishmaniasis in BALB/c mice. Phytomedicine 21:1048–1052

    CAS  PubMed  Google Scholar 

  • Monzote L, Sariego I, Montalvo AM, Garrido N, Scull R, Abreu J (2004) Propiedades antiprotozoarias de aceites esenciales extraídos de plantas cubanas. Rev Cubana Med Trop 56:230–233

    Google Scholar 

  • Monzote L, Nance MR, García M, Scull R, Setzer W (2011) Comparative chemical cytotoxicity and antileishmanial properties of essential oils from Chenopodium ambrosioides. Nat Prod Commun 6:281–286

    CAS  PubMed  Google Scholar 

  • Muhayimana A, Chalchat J, Garry R (1998) Chemical composition of essential oils of Chenopodium ambrosioides L from Rwanda. J Essent Oil Res 10:690–692

    CAS  Google Scholar 

  • Nascimento F, Cruz G, Pereira PV, Maciel M, Silva L, Azevedo AP, Barroqueiro ES, Guerra RN (2006a) Ascitic and solid Ehrlich tumor inhibition by Chenopodium ambrosioides treatment. Life Sci 78:2650–2653

    CAS  PubMed  Google Scholar 

  • Nascimento FR, Barroqueiro ES, Azevedo AP, Lopes AS, Ferreira SC, Silva LA et al (2006b) Macrophage activation induced by Orbignya phalerata mart. J Ethanopharmacol 103:53–58

    Google Scholar 

  • Navaei MN, Mirza M (2004) Chemical composition of the oil of Chenopodium ambrosioides L from Iran. Iranian J Pharma Res 2:88

    Google Scholar 

  • Nenaah GE, Ibrahim SIA (2011) Chemical composition and the insecticidal activity of certain plants applied as powders and essential oils against two stored-products coleopteran beetles. J Pest Sci 84:393

    Google Scholar 

  • Ntonifor NN, Forbanka DN, Mbuh JV (2011) Potency of Chenopodium ambrosioides powders and its combinations with wood ash on Sitophilus zeamais in stored maize. J Entomol 8:375–383

    Google Scholar 

  • Oliveira CM, Auad AM, Mendes SM, Frizzas MR (2014) Crop losses and the economic impact of insect pests on Brazilian agriculture. Crop Prot 56:50–54

    Google Scholar 

  • Omatsu N, Tomihama T, Nonaka Y (2012) Incidence of strobilurin and benzimidazole resistant strains of Pestalotiopsis longiseta causal agent of gray blight and practical control in tea field of Kagoshima Prefecture. Jpn J Phytopathol 78:3–9

    CAS  Google Scholar 

  • Omidbaigi R, Sefidkon F, Borna F (2005) Essential oil content and compositions of Chenopodium ambrosioides L. Jeobp 8:154–158

    CAS  Google Scholar 

  • Onocha PA, Ekundayo O, Eramo T, Laakso I (1999) Essential oil constituents of Chenopodium ambrosioides L. leaves from Nigeria. J Essent Oil Res 11:220–222

    CAS  Google Scholar 

  • Owolabi MS, Lajide L, Oladimeji MO, Setzer WM, Palazzo MC, Olowu RA, Ogundajo A (2009) Volatile constituents and antibacterial screening of the essential oil of Chenopodium ambrosioides L. growing in Nigeria. Nat Prod Commun 4:989–992

    CAS  PubMed  Google Scholar 

  • Pamo ET, Zollo PHA, Tendonkeng F, Kana JR, Tapondjou AJ, Fongang MD (2004) Composition chimique et effet Acaricide des huiles essentielles des feuilles de Chenopodium ambrosioides et de Eucalyptus saligna sur les tiques (Rhipicephalus lunulatus) au Cameroun. Bull Anim Hlth Prod Afr 52:221–228

    Google Scholar 

  • Pandey AK, Pradeep K, Pooja S, Tripathi NN, Bhajpai VK (2017) Essential oils: Source of antimicrobial and food preservative properties. Front Microbiol 7:2161

    PubMed  PubMed Central  Google Scholar 

  • Pandey AK, Palni UT, Tripathi NN (2014a) Repellent activity of some essential oils against two stored product beetles Callosobruchus chinensis L. and C. maculatus F. (Coleoptera: Bruchidae) with reference to Chenopodium ambrosioides L for the safety of pigeon pea seeds. J Food Sci Technol 51:4066–4071

    CAS  PubMed  Google Scholar 

  • Pandey AK, Pooja S, Palni UT, Tripathi NN (2012) In-vitro antibacterial activity of essential oils of aromatic plants against Erwinia herbicola (Lohnis) and Pseudomonas putida (Krish Hamilton). J Serbian Chem Soc 77:313–323

    CAS  Google Scholar 

  • Pandey AK, Pooja S, Palni UT, Tripathi NN (2013) Application of Chenopodium ambrosioides Linn essential oil as botanical fungicide for the management of fungal deterioration in pulse. Biol Agric Horti 29:197–208

    Google Scholar 

  • Pandey AK, Pooja S, Palni UT, Tripathi NN (2014b) In vivo evaluation of two essential oil based botanical formulations (EOBBF) for the use against stored product pests Aspergillus and Callosobruchus (Coleoptera: Bruchidae) species. J Stored Prod Res 59:285–291

    Google Scholar 

  • Pandey AK, Tripathi NN (2010) Diversity and distribution of aromatic plants in forests of Gorakhpur Division UP India. Biol Forum- an Int J 2:25–33

    Google Scholar 

  • Pare PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121:325–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paré PW, Zajicek J, Ferracini VL, Melo IS (1993) Antifungal terpenoids from Chenopodium ambrosioides. Bioch Syst Ecol 21:649–653

    Google Scholar 

  • Patrício FJ, Costa GC, Pereira PVS, Aragão-Filho WC, Sousa SM, Frazão JB et al (2008) Efficacy of the intralesional treatment with Chenopodium ambrosioides in the murine infection by Leishmania amazonensis. J Ethnopharmacol 115:313–319

    PubMed  Google Scholar 

  • Pavela R, Maggi F, Lupidi G, Mbuntcha H, Woguem V, Womeni HM et al (2018) Clausena anisata and Dysphania ambrosioides essential oils: from ethno-medicine to modern uses as effective insecticides. Environ Sci Pollution Res 25:10493–10503

    CAS  Google Scholar 

  • Pereira WS, da Silva GP, Vigliano MV, Leal NRF, Pinto FA, Fernandes DC, Santos SVM, Martino T, Nascimento JR, de Azevedo APS, Fonseca EN, Velozo LSM, Souza Neto LR, Bastos FF, Portari EA, Sabino KCC, Nascimento F, Coelho MGP (2018) Anti-arthritic properties of crude extract from Chenopodium ambrosioides L. leaves. J Pharm Pharmacol 70:1078–1091

    CAS  PubMed  Google Scholar 

  • Pereira-de-Morais L, deAlencar S, Silva RER, doAmaralFerrazNavarro DM, Coutinho HDM, deMenezes IRA, Kerntopf MR, daCunha FAB, Cardoso JHL, Barbosa R (2020) Myorelaxant action of the Dysphania ambrosioides (L.) Mosyakin & Clemants essential oil and its major constituent α-terpinene in isolated rat trachea. Food Chem 325:126923

  • Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A (2017) The global problem of antifungal resistance: prevalence mechanisms and management. Lancet Infect Dis 17:e383–e392

    PubMed  Google Scholar 

  • Pino JA, Marbot R, Real IM (2003) Essential oil of Chenopodium ambrosioides L. from Cuba. J Essent Oil Res 15:213–214

    CAS  Google Scholar 

  • Pizana CG, Barrera Necha LL, Gomez MYR (2010) Evaluation of the fungicidal activity of leaves powders and extracts of fifteen mexican plants against Fusarium oxysporum f.sp. gadioli (Massey) Snyder and Hansen. Plant Pathol J 9:103–111

    CAS  Google Scholar 

  • Pollack Y, Segal R, Golenser J (1990) The effect of ascaridole on the development of Plasmodium falsiparum. Parasitol Res 76:570–572

    CAS  PubMed  Google Scholar 

  • Pradeepa NHL, Jagath OVDSW, Liyanaarachchi CJ, Karunajeewa NDGP, Mahindapala JKGP, Wijesundera RLC, Abeysinghe ISB (2013) Sensitivity of isolates of Macrophoma theicola from untreated and DMI treated tea to hexaconazole. J Plant Dis Prot 120:201–204

    Google Scholar 

  • Rahman MH, Shovan LR, Hjeljord LG, Aam BB, Eijsink VGH, Sørlie M et al (2014) Inhibition of fungal plant pathogens by synergistic action of chito-oligosaccharides and commercially available fungicides. PLoS ONE 9:e93192

    PubMed  PubMed Central  Google Scholar 

  • Reyes-Becerril M, Angulo C, Sanchez V, Vázquez-Martínez J, López MG (2019) Antioxidant, intestinal immune status and anti-inflammatory potential of Chenopodium ambrosioides L. in fish: In vitro and in vivo studies. Fish Shellfish Immunol 86:420–428

    CAS  PubMed  Google Scholar 

  • Rhouma A, Daoud HB, Ghanmi S, Saah HB, Romdhane M, Demak M (2009) Antimicrobial activities of leaf extracts of Pistacia and Schinus species against some plant pathogenic fungi and bacteria. J Plant Pathol 91:339–345

    Google Scholar 

  • Rios CEP, Abreu AG, Braga Filho JAF, Nascimento JR, Guerra RNM, Amaral FMM, Maciel MCG, Nascimento FRF (2017) Chenopodium ambrosioides L improves phagocytic activity and decreases bacterial growth and the systemic inflammatory response in sepsis induced by cecal ligation and puncture. Front Microbiol 8:148

    PubMed  PubMed Central  Google Scholar 

  • Rodrigues JGM, Albuquerque PSV, Nascimento JR, Campos JAV, Godinho ASS et al (2021) The immunomodulatory activity of Chenopodium ambrosioides reduces the parasite burden and hepatic granulomatous inflammation in Schistosoma mansoni-infection. J Ethnopharmacol 264:113287

    CAS  PubMed  Google Scholar 

  • Rohloff J, Dragland S, Mordal R, Iversen T (2005) Effect of harvest time and drying method on biomass production essential oil yield and quality of peppermint (Mentha × piperita L). J Agric Food Chem 53:4143–4148

    CAS  PubMed  Google Scholar 

  • Roubos CR, Rodriguez-Saona C, Isaacs R (2014) Mitigating the effects of insecticides on arthropod biological control at field and landscape scales. Biol Control 75:28–38

    CAS  Google Scholar 

  • Rundlof M, Andersson GKS, Bommarco R et al (2015) Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521:77–80

    PubMed  Google Scholar 

  • Sa RD, Galvao MAM, Ferreira MRA, Soares LAL, Randau KP (2014) Chemical composition of the essential oil from leaves of Chenopodium ambrosioides L grown in Recife-PE Brazil. Rev Bras Farm 95:855–866

    Google Scholar 

  • Sagrero-Nieves L, Bartley JP (1995) Volatile constituents from the leaves of Chenopodium ambrosioides L. J Essent Oil Res 7:221–223

    CAS  Google Scholar 

  • Salimena JP, Monteiro FP, Estevão de Souza P, de Souza JD (2015) Extraction of essential oil from inflorescences of Dysphania ambrosioides and its activity against Botrytis cinerea. J Med Plant Res 9:1006–1012

    CAS  Google Scholar 

  • Santiago de AJ, das Graças Cardoso M, Batista LR, de Castro EM, Teixeira ML, Ferreira PM (2016) Essential oil from Chenopodium ambrosioides L.: secretory structures, antibacterial and antioxidant activities. Acta Sci Biol Sci 38:139-147

  • Santiago JA, Cardoso MG, Figueiredo ACS, Moraes JC, Assis FA, Teixeira ML et al (2014) Chemical characterization and application of the essential oils from Chenopodium ambrosioides and Philodendron bipinnatifidum in the control of Diabrotica speciosa (Coleoptera: Chrysomelidae). Am J Plant Sci 5:3994–4002

    CAS  Google Scholar 

  • Sati SC, Takuli P, Kumar P, Khulbe K (2015) Antibacterial activity of three medicinal plants of Kumaun Himalaya against some pathogenic bacteria. Int J Pharma Sci Res 6:1361–1368

    Google Scholar 

  • Schumann GL (1991) Plant diseases: their biology and social impact American Phytopathological Society St Paul Minnesota.

  • Shaaya E, Kostyukovsky M (2006) Essential oils: potency against stored product insects and mode of action. Stewart Postharvest Rev 2:1–6

    Google Scholar 

  • Shabani B, Rezaei R, Charehgani H, Salehi A (2019) Study on antibacterial effect of essential oils of six plant species against Pseudomonas syringae pv syringae Van Hall 1902 and Pseudomonas fluorescens Migula. J Plant Pathol 101:671–675

    Google Scholar 

  • Shameem AS, Khan KZ, Waza AA, Shah AH, Qadri H, Ganai BA (2019) Bioactivities and chemoprofiling comparisons of Chenopodium ambrosioides L and Chenopodium botrys L. growing in Kashmir India. Asian J Pharma Clin Res 12:124–129

    CAS  Google Scholar 

  • Smith GH, Robert JM, Pope TW (2018) Terpene based biopesticides as potential alternatives to synthetic insecticides for control of aphid pests on protected ornamentals. Crop Prot 110:125–130

    CAS  Google Scholar 

  • Soares MH, Dias HJ, Vieira TM, De Souza MGM, Cruz AFF, Badoco FR et al (2017) Chemical composition antibacterial schistosomicidal and cytotoxic activities of the essential oil of Dysphania ambrosioides (L) (Chenopodiaceae). Chem Biodivers 14:e1700149

    Google Scholar 

  • Sonker N, Pandey AK, Pooja S (2015) Efficiency of Artemisia nilagirica (Clarke) Pamp essential oil as a mycotoxicant against postharvest mycobiota of table grapes. J Sci Food Agric 95:1932–1939

    CAS  PubMed  Google Scholar 

  • Su HCF (1991) Toxicity and repellency of Chenopodium oil to four species of stored-product insects. J Entomol Sci 26:178–182

    Google Scholar 

  • Tapondjou LA, Adler C, Bouda H, Fontem DA (2002) Efficacy of powder and essential oil from Chenopodium ambrosioides leaves as post-harvest grain protectants against six stored-product beetles. J Stored Prod Res 38:395–402

    CAS  Google Scholar 

  • Tripathi P, Dubey NK, Shukla AK (2008) Use of some essential oils as post-harvest botanical fungicides in the management of grey mould of grapes caused by Botrytis cinerea. World J Microbiol Biotechnol 24:39–46

    CAS  Google Scholar 

  • Trivellato-Grassi L, Malheiros A, Meyre-Silva C, Buss ZS, Monguilhot ED, Frode TS et al (2013) From popular use to pharmacological validation: a study of the anti-inflammatory antinociceptive and healing effects of Chenopodium ambrosioides extract. J Ethnopharmacol 145:127–138

    CAS  Google Scholar 

  • Van Bambeke F, Lee VJ (2006) Inhibitors of bacterial efflux pumps as adjuvants in antibiotic treatments and diagnostic tools for detection of resistance by efflux. Recent Pat Antiinfect Drug Discov 1:157–175

    PubMed  Google Scholar 

  • Verweij PE, Snelders E, Kema GH, Mellado E, Melchers WJ (2009) Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use? Lancet Infect Dis 9:789–795

    CAS  PubMed  Google Scholar 

  • Wei H, Liu J, Li B, Zhan Z, Chen Z, Tian H, Lin S, Gu X (2015) The toxicity and physiological effect of essential oil from Chenopodium ambrosioides against the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Crop Prot 76:68–74

    CAS  Google Scholar 

  • Xin P, Ming L, Sen-hong C (2007) GC-MS analysis of essential oil from Chenopodium ambrosioides L. Chinese J Pharma Analy 27:909–911

    Google Scholar 

  • Xiufang X, Yinhua Z, Fujun G, Peng N, Ping N, Guoliang W (1999) Studies on the chemical constituents of the volatile oil from Chenopodium ambrosioides L. grown in Hubei. Wuhan Bot Res 17:244–248

    Google Scholar 

  • Xu J, Zhou F, Ji BP, Pei RS, Xu N (2008) The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett Appl Microbiol 47:174–179

    CAS  PubMed  Google Scholar 

  • Yamada K, Sonoda R, Ishikawa K (2016) Population genetic structure of QoI-resistant Pestalotiopsis longiseta isolates causing tea gray blight. Plant Dis 100:1686–1691

    PubMed  Google Scholar 

  • Zago PMW, Dos Santos Castelo Branco SJ, de Albuquerque Bogéa Fecury L, Carvalho LT, Rocha CQ, Madeira PLB, de Sousa EM, de Siqueira FSF, Paschoal MAB, Diniz RS, Gonçalves LM (2019) Anti-biofilm action of Chenopodium ambrosioides extract, cytotoxic potential and effects on acrylic denture surface. Front Microbiol 10:1724

    PubMed  PubMed Central  Google Scholar 

  • Zamilpa A, Garcia-Alanis C, Lopez-Arel ME (2019) In vitro nematicidal effect of Chenopodium ambrosioides and Castela tortuosa n-hexane extracts against Haemonchus contortus (Nematoda) and their anthelmintic effect in gerbils. J Helminthol 93:434–439

    CAS  PubMed  Google Scholar 

  • Zefzoufi M, Smaili A, Fdil R, Rifai LA, Faize L, Koussa T, Makroum K, Ali A et al (2020) Composition of essential oil of Moroccan Dysphania ambrosioides and its antimicrobial activity against bacterial and fungal phytopathogens. J Plant Pathol 102:47–58

    Google Scholar 

  • Zhu WX, Zhao K, Chu SS, Liu ZL (2012) Evaluation of essential oil and its three main active ingredients of chinese Chenopodium ambrosioides (Family: Chenopodiaceae) against Blattella germanica. J Arthropod Borne Dis 6:90–97

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge anonymous reviewers and handling editor for their contribution in improving the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AKP concieved the idea and  involved in reviewing the literature, compilation of the research data, preparing the draft, and revising the manuscript. PS guided AKP to outline the main areas to be reviewed, critically reviewed and revised the manuscript for the final version. Both authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Abhay K. Pandey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Pandey, A.K. Dysphania ambrosioides essential oils: from pharmacological agents to uses in modern crop protection—a review. Phytochem Rev 21, 141–159 (2022). https://doi.org/10.1007/s11101-021-09752-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-021-09752-6

Keywords

  • Essential oil (EO)
  • Dysphania ambrosioides
  • Chemical composition.
  • Pharmacological evaluation
  • Antibacterial
  • Antifungal
  • Insecticidal
  • Pests Management